21 research outputs found

    Molecular Cloning, Characterization and Predicted Structure of a Putative Copper-Zinc SOD from the Camel, Camelus dromedarius

    Get PDF
    Superoxide dismutase (SOD) is the first line of defense against oxidative stress induced by endogenous and/or exogenous factors and thus helps in maintaining the cellular integrity. Its activity is related to many diseases; so, it is of importance to study the structure and expression of SOD gene in an animal naturally exposed most of its life to the direct sunlight as a cause of oxidative stress. Arabian camel (one humped camel, Camelus dromedarius) is adapted to the widely varying desert climatic conditions that extremely changes during daily life in the Arabian Gulf. Studying the cSOD1 in C. dromedarius could help understand the impact of exposure to direct sunlight and desert life on the health status of such mammal. The full coding region of a putative CuZnSOD gene of C. dromedarius (cSOD1) was amplified by reverse transcription PCR and cloned for the first time (gene bank accession number for nucleotides and amino acids are JF758876 and AEF32527, respectively). The cDNA sequencing revealed an open reading frame of 459 nucleotides encoding a protein of 153 amino acids which is equal to the coding region of SOD1 gene and protein from many organisms. The calculated molecular weight and isoelectric point of cSOD1 was 15.7 kDa and 6.2, respectively. The level of expression of cSOD1 in different camel tissues (liver, kidney, spleen, lung and testis) was examined using Real Time-PCR. The highest level of cSOD1 transcript was found in the camel liver (represented as 100%) followed by testis (45%), kidney (13%), lung (11%) and spleen (10%), using 18S ribosomal subunit as endogenous control. The deduced amino acid sequence exhibited high similarity with Cebus apella (90%), Sus scrofa (88%), Cavia porcellus (88%), Mus musculus (88%), Macaca mulatta (87%), Pan troglodytes (87%), Homo sapiens (87%), Canis familiaris (86%), Bos taurus (86%), Pongo abelii (85%) and Equus caballus (82%). Phylogenetic analysis revealed that cSOD1 is grouped together with S. scrofa. The predicted 3D structure of cSOD1 showed high similarity with the human and bovine CuZnSOD homologues. The Root-mean-square deviation (rmsd) between cSOD1/hSOD1 and cSOD1/bSOD1 superimposed structure pairs were 0.557 and 0.425 A. The Q-score of cSOD1-hSOD1 and cSOD1-bSOD1 were 0.948 and 0.961, respectively

    A unique group of self-splicing introns in bacteriophage T4

    No full text
    289-293We describe in this review, the salient splicing features of group I introns of bac teriophage T4 and propose, a hypothetical model to fit in the self-splicing of nrdB intron ofT4 phage. Occurrence of non-coding sequences in prokaryotic cells is a rare event while it is common in ellkaryotic cells, especially the higher eukaryotes. Therefore. T4 bacteriophage can serve as a good model system to study the evoluti onary aspects of splicing of introns. Three genes of T4 phage were found to have st retches of non-coding sequences which belonged to the group IA type introns of self-splicing nature

    Iron response elements (IREs)-mRNA of Alzheimer's amyloid precursor protein binding to iron regulatory protein (IRP1): a combined molecular docking and spectroscopic approach

    No full text
    Abstract The interaction between the stem-loop structure of the Alzheimer's amyloid precursor protein IRE mRNA and iron regulatory protein was examined by employing molecular docking and multi-spectroscopic techniques. A detailed molecular docking analysis of APP IRE mRNA∙IRP1 reveals that 11 residues are involved in hydrogen bonding as the main driving force for the interaction. Fluorescence binding results revealed a strong interaction between APP IRE mRNA and IRP1 with a binding affinity and an average binding sites of 31.3 × 106 M−1 and 1.0, respectively. Addition of Fe2+(anaerobic) showed a decreased (3.3-fold) binding affinity of APP mRNA∙IRP1. Further, thermodynamic parameters of APP mRNA∙IRP1 interactions were an enthalpy-driven and entropy-favored event, with a large negative ΔH (–25.7 ± 2.5 kJ/mol) and a positive ΔS (65.0 ± 3.7 J/mol·K). A negative ΔH value for the complex formation suggested the contribution of hydrogen bonds and van der Waals forces. The addition of iron increased the enthalpic contribution by 38% and decreased the entropic influence by 97%. Furthermore, the stopped-flow kinetics of APP IRE mRNA∙IRP1 also confirmed the complex formation, having the rate of association (k on) and the rate of dissociation (k off) as 341 μM−1 s−1, and 11 s−1, respectively. The addition of Fe2+ has decreased the rate of association (k on) by ~ three-fold, whereas the rate of dissociation (k off) has increased by ~ two-fold. The activation energy for APP mRNA∙IRP1 complex was 52.5 ± 2.1 kJ/mol. The addition of Fe2+ changed appreciably the activation energy for the binding of APP mRNA with IRP1. Moreover, circular dichroism spectroscopy has confirmed further the APP mRNA∙IRP1 complex formation and IRP1 secondary structure change with the addition of APP mRNA. In the interaction between APP mRNA and IRP1, iron promotes structural changes in the APP IRE mRNA∙IRP1 complexes by changing the number of hydrogen bonds and promoting a conformational change in the IRP1 structure when it is bound to the APP IRE mRNA. It further illustrates how IRE stem-loop structure influences selectively the thermodynamics and kinetics of these protein-RNA interactions

    Sunset Yellow Dye Induces Amorphous Aggregation in β-Lactoglobulin at Acidic pH: A Multi-Techniques Approach

    No full text
    Protein aggregation is of two types: (i) amorphous and (ii) amyloid fibril. Several extrinsic factors (temperature, pH, and small ligands) stimulate protein aggregation in vitro. In this study, we have examined the role of sunset yellow (SY) on the β-lactoglobulin (BLG) aggregation at pH 2.0. We have used spectroscopic (turbidity, Rayleigh light scattering (RLS), far-UV CD) and microscopic (transmission electron microscopy [TEM]) techniques to describe the effects of SY on BLG aggregation. Our results showed that BLG aggregation is dependent on SY concentrations. Very low concentrations (0.0–0.07 mM) of SY were unable to induce aggregation, while SY in the concentrations range of 0.1–5.0 mM induces aggregation in BLG. The kinetics of SY-stimulated aggregation is very fast and monomeric form of BLG directly converted into polymeric aggregates. The kinetics results also showed SY-induced BLG aggregation disappeared in the presence of NaCl. The far-UV CD and TEM results indicated the amorphous nature of SY-induced BLG aggregates. We believe that our results clearly suggest that SY dye effectively stimulates BLG aggregation

    <em>Loranthus regularis</em> Ameliorates Neurodegenerative Factors in the Diabetic Rat Retina

    No full text
    Diabetic retinopathy remains a primary source of blindness with the growing pandemic of diabetes. Numerous studies have shown that early neurodegeneration caused by elevated oxidative stress may initiate microvascular damage in the diabetic retina during the last few decades. A variety of preventive and treatment strategies using phytochemicals that possess high antioxidants have shown great promise in reducing diabetes-induced neurodegeneration retinal damage. In this investigation, we employed an extract of Loranthus regularis, a traditional medicinal herb which is found to improve diabetes and associated complications in experimental studies. We orally treated STZ-induced diabetic rats with L. regularis and analyzed the neurodegenerative factors in the retina. After treatments, we used Western blotting techniques to analyze the protein content of neurotrophic factors (NGF, BDNF, TrkB), apoptotic factors (cytochrome c, Bcl-2, Bax), and phosphorylation of AKT in the diabetic retina. Additionally, we used ELISA methods to measure the contents of BDNF and the activity of Caspase-3 and biochemical procedures to determine the levels of glutathione and lipid peroxidation (TBARS). Our findings show that L. regularis treatments resulted in a considerable increase in neurotrophic factors and a decrease in apoptotic factors in the diabetic retina. Furthermore, in diabetic retina treated with L. regularis, the level of Bcl-2 protein increased, while the phosphor-AKT signaling improved. As a result, L. regularis may protect against diabetic-induced retinal neuronal damage by increasing neurotrophic support and reducing oxidative stress and apoptosis. Therefore, this study suggests that in diabetic retinopathy, L. regularis could be a potential therapy option for preventing neuronal cell death

    <i>Camelus dromedarius</i> glucose transporter 4: <i>in silico</i> analysis, cloning, expression, purification and characterisation in <i>E. coli</i>

    No full text
    <p>Camels have exceptional carbohydrate metabolism as their plasma glucose level is high and have low whole body insulin sensitivity, similar to that observed in type 2 diabetes patients. We aimed at studing an important component of insulin signalling pathway, the GLUT4, in camel. <i>Camelus dromedarius</i> GLUT4 (CdGLUT4) CDS is 1530 nucleotide in length that encodes for a 55KDa protein. CdGLUT4 has 23 amino acid substitutions and 3N-glycosylation sites, compared to 2 in Human GLUT4. 3 D structures of CdGLUT4 and HsGLUT4 generated by homology modelling revealed conservation of characteristic signature motifs. CdGLUT4 was cloned and expressed optimally in C43(DE3)pLysS strain and maximum detergent solubility was observed in <i>n</i>-Dodecyl-β-d-maltopyranoside. These preliminary data provide information on residual differences between CdGLUT4 and HsGLUT4 that may be responsible for camel’s unique glucose metabolism. These differences are postulated to assist in designing and development of efficacious GLUT4 that might help in management of diabetic patients.</p

    Liposome-Mediated Delivery of MERS Antigen Induces Potent Humoral and Cell-Mediated Immune Response in Mice

    No full text
    The advancements in the field of nanotechnology have provided a great platform for the development of effective antiviral vaccines. Liposome-mediated delivery of antigens has been shown to induce the antigen-specific stimulation of the humoral and cell-mediated immune responses. Here, we prepared dried, reconstituted vesicles (DRVs) from DPPC liposomes and used them as the vaccine carrier system for the Middle East respiratory syndrome coronavirus papain-like protease (DRVs-MERS-CoV PLpro). MERS-CoV PLpro emulsified in the Incomplete Freund&rsquo;s Adjuvant (IFA-MERS-CoV PLpro) was used as a control. Immunization of mice with DRVs-MERS-CoV PLpro did not induce any notable toxicity, as revealed by the levels of the serum alanine transaminase (ALT), aspartate transaminase (AST), blood urea nitrogen (BUN) and lactate dehydrogenase (LDH) in the blood of immunized mice. Immunization with DRVs-MERS-CoV PLpro induced greater antigen-specific antibody titer and switching of IgG1 isotyping to IgG2a as compared to immunization with IFA-MERS-CoV PLpro. Moreover, splenocytes from mice immunized with DRVs-MERS-CoV PLpro exhibited greater proliferation in response to antigen stimulation. Moreover, splenocytes from DRVs-MERS-CoV PLpro-immunized mice secreted significantly higher IFN-&gamma; as compared to splenocytes from IFA-MERS-CoV PLpro mice. In summary, DRVs-MERS-CoV PLpro may prove to be an effective prophylactic formulation to prevent MERS-CoV infection

    Monomeric Camelus dromedarius GSTM1 at low pH is structurally more thermostable than its native dimeric form.

    No full text
    Glutathione S‒transferases (GSTs) are multifunctional enzymes that play an important role in detoxification, cellular signalling, and the stress response. Camelus dromedarius is well-adapted to survive in extreme desert climate and it has GSTs, for which limited information is available. This study investigated the structure-function and thermodynamic properties of a mu-class camel GST (CdGSTM1) at different pH. Recombinant CdGSTM1 (25.7 kDa) was expressed in E. coli and purified to homogeneity. Dimeric CdGSTM1 dissociated into stable but inactive monomeric subunits at low pH. Conformational and thermodynamic changes during the thermal unfolding pathway of dimeric and monomeric CdGSTM1 were characterised via a thermal shift assay and dynamic multimode spectroscopy (DMS). The thermal shift assay based on intrinsic tryptophan fluorescence revealed that CdGSTM1 underwent a two-state unfolding pathway at pH 1.0-10.0. Its Tm value varied with varying pH. Another orthogonal technique based on far-UV CD also exhibited two-state unfolding in the dimeric and monomeric states. Generally, proteins tend to lose structural integrity and stability at low pH; however, monomeric CdGSTM1 at pH 2.0 was thermally more stable and unfolded with lower van't Hoff enthalpy. The present findings provide essential information regarding the structural, functional, and thermodynamic properties of CdGSTM1 at pH 1.0-10.0
    corecore