232 research outputs found

    On cost-effective reuse of components in the design of complex reconfigurable systems

    Get PDF
    Design strategies that benefit from the reuse of system components can reduce costs while maintaining or increasing dependability—we use the term dependability to tie together reliability and availability. D3H2 (aDaptive Dependable Design for systems with Homogeneous and Heterogeneous redundancies) is a methodology that supports the design of complex systems with a focus on reconfiguration and component reuse. D3H2 systematizes the identification of heterogeneous redundancies and optimizes the design of fault detection and reconfiguration mechanisms, by enabling the analysis of design alternatives with respect to dependability and cost. In this paper, we extend D3H2 for application to repairable systems. The method is extended with analysis capabilities allowing dependability assessment of complex reconfigurable systems. Analysed scenarios include time-dependencies between failure events and the corresponding reconfiguration actions. We demonstrate how D3H2 can support decisions about fault detection and reconfiguration that seek to improve dependability while reducing costs via application to a realistic railway case study

    Supporting group maintenance through prognostics-enhanced dynamic dependability prediction

    Get PDF
    Condition-based maintenance strategies adapt maintenance planning through the integration of online condition monitoring of assets. The accuracy and cost-effectiveness of these strategies can be improved by integrating prognostics predictions and grouping maintenance actions respectively. In complex industrial systems, however, effective condition-based maintenance is intricate. Such systems are comprised of repairable assets which can fail in different ways, with various effects, and typically governed by dynamics which include time-dependent and conditional events. In this context, system reliability prediction is complex and effective maintenance planning is virtually impossible prior to system deployment and hard even in the case of condition-based maintenance. Addressing these issues, this paper presents an online system maintenance method that takes into account the system dynamics. The method employs an online predictive diagnosis algorithm to distinguish between critical and non-critical assets. A prognostics-updated method for predicting the system health is then employed to yield well-informed, more accurate, condition-based suggestions for the maintenance of critical assets and for the group-based reactive repair of non-critical assets. The cost-effectiveness of the approach is discussed in a case study from the power industry

    A cost-benefit approach for the evaluation of prognostics-updated maintenance strategies in complex dynamic systems

    Get PDF
    The implementation of maintenance strategies which integrate online condition data has the potential to increase availability and reduce maintenance costs. Prognostics techniques enable the implementation of these strategies through up-to-date remaining useful life estimations. However, a cost-benefit assessment is necessary to verify the scale of potential benefits of condition-based maintenance strategies and prognostics for a given application. The majority of prognostics applications focus on the evaluation of a specific failure mode of an asset. However, industrial systems are comprised of different assets with multiple failure modes, which in turn, work in cooperation to perform a system level function. Besides, these systems include time-dependent events and conditional triggering events which cause further effects on the system. In this context not only are the system-level prognostics predictions challenging, but also the cost-benefit analysis of condition-based maintenance policies. In this work we combine asset prognostics predictions with temporal logic so as to obtain an up-to-date system level health estimation. We use asset level and system level prognostics estimations to evaluate the cost-effectiveness of alternative maintenance policies. The application of the proposed approach enables the adoption of conscious trade-off decisions between alternative maintenance strategies for complex systems. The benefits of the proposed approach are discussed with a case study from the power industry

    Prognostics and health management oriented data analytics suite for transformer health monitoring

    Get PDF
    Condition monitoring of power transformers is crucial for the reliable and cost-effective operation of the power grid. The unexpected failure of a transformer can lead to different consequences ranging from a lack of export capability, with the corresponding economic penalties, to catastrophic failure, with the associated health, safety, and economic effects. With the advance of machine learning techniques, it is possible to enhance traditional transformer health monitoring techniques with data-driven and expert-based prognostics and health management (PHM) applications. Accordingly, this paper reviews the experience of the authors in the implementation of machine learning methods for transformer condition monitoring

    Introducing Axial Chirality into Mesoionic 4,4′-Bis(1,2,3-triazole) Dicarbenes

    Get PDF
    Mesoionic 4,4′-bis(1,2,3-triazole-5,5′-diylidene) Rh(I) complexes having a C2 chiral 4,4′-axis were accessed from 3-alkyltriazolium salts in virtually complete de. Their structure and configurational integrity were assessed by NMR spectroscopy, X-ray crystallography, and chiral HPLC. Computational analysis of the MICs involved in the reaction suggested the formation of a highly stable and unprecedented cation-carbene intermediate species, which could be evidenced experimentally by cyclic voltammetry analysis

    Prognostics and health management oriented data analytics suite for transformer health monitoring

    Get PDF
    Condition monitoring of power transformers is crucial for the reliable and cost-effective operation of the power grid. The unexpected failure of a transformer can lead to different consequences ranging from a lack of export capability, with the corresponding economic penalties, to catastrophic failure, with the associated health, safety, and economic effects. With the advance of machine learning techniques, it is possible to enhance traditional transformer health monitoring techniques with data-driven and expert-based prognostics and health management (PHM) applications. Accordingly, this paper reviews the experience of the authors in the implementation of machine learning methods for transformer condition monitoring

    Supporting group maintenance through prognostics-enhanced dynamic dependability prediction

    Get PDF
    Condition-based maintenance strategies adapt maintenance planning through the integration of online condition monitoring of assets. The accuracy and cost-effectiveness of these strategies can be improved by integrating prognostics predictions and grouping maintenance actions respectively. In complex industrial systems, however, effective condition-based maintenance is intricate. Such systems are comprised of repairable assets which can fail in different ways, with various effects, and typically governed by dynamics which include time-dependent and conditional events. In this context, system reliability prediction is complex and effective maintenance planning is virtually impossible prior to system deployment and hard even in the case of condition-based maintenance. Addressing these issues, this paper presents an online system maintenance method that takes into account the system dynamics. The method employs an online predictive diagnosis algorithm to distinguish between critical and non-critical assets. A prognostics-updated method for predicting the system health is then employed to yield well-informed, more accurate, condition-based suggestions for the maintenance of critical assets and for the group-based reactive repair of non-critical assets. The cost-effectiveness of the approach is discussed in a case study from the power industry

    Intraclass image augmentation for defect detection using generative adversarial neural networks

    Get PDF
    Surface defect identification based on computer vision algorithms often leads to inadequate generalization ability due to large intraclass variation. Diversity in lighting conditions, noise components, defect size, shape, and position make the problem challenging. To solve the problem, this paper develops a pixel-level image augmentation method that is based on image-to-image translation with generative adversarial neural networks (GANs) conditioned on fine-grained labels. The GAN model proposed in this work, referred to as Magna-Defect-GAN, is capable of taking control of the image generation process and producing image samples that are highly realistic in terms of variations. Firstly, the surface defect dataset based on the magnetic particle inspection (MPI) method is acquired in a controlled environment. Then, the Magna-Defect-GAN model is trained, and new synthetic image samples with large intraclass variations are generated. These synthetic image samples artificially inflate the training dataset size in terms of intraclass diversity. Finally, the enlarged dataset is used to train a defect identification model. Experimental results demonstrate that the Magna-Defect-GAN model can generate realistic and high-resolution surface defect images up to the resolution of 512 × 512 in a controlled manner. We also show that this augmentation method can boost accuracy and be easily adapted to any other surface defect identification models

    Uncertainty analysis of two gas measurement DGA ratios for improved diagnostics applications

    Get PDF
    This paper formulates the exact analytical probability density function (PDF) for the ratio of two independent dissolved gas analysis (DGA) measurements that include individual gas measurement errors. It is demonstrated that for small DGA gas measurement errors, the correct two-gas ratio PDF approaches a conventional Gaussian distribution. As the measurement accuracy decreases, the ratio PDF becomes non-Gaussian with the maximum likelihood value of the PDF deviating from the true underlying value. For larger errors, the maximum likelihood estimate of the gas ratio deviates significantly from presumed Gaussian statistics. A method for de-biasing measured gas ratio values is presented and a simple application is used to demonstrate the proposed approach
    corecore