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a b s t r a c t 

Condition-based maintenance strategies adapt maintenance planning through the integration of online condition 
monitoring of assets. The accuracy and cost-effectiveness of these strategies can be improved by integrating 
prognostics predictions and grouping maintenance actions respectively. In complex industrial systems, however, 
effective condition-based maintenance is intricate. Such systems are comprised of repairable assets which can fail 
in different ways, with various effects, and typically governed by dynamics which include time-dependent and 
conditional events. In this context, system reliability prediction is complex and effective maintenance planning 
is virtually impossible prior to system deployment and hard even in the case of condition-based maintenance. 
Addressing these issues, this paper presents an online system maintenance method that takes into account the 
system dynamics. The method employs an online predictive diagnosis algorithm to distinguish between critical 
and non-critical assets. A prognostics-updated method for predicting the system health is then employed to yield 
well-informed, more accurate, condition-based suggestions for the maintenance of critical assets and for the 
group-based reactive repair of non-critical assets. The cost-effectiveness of the approach is discussed in a case 
study from the power industry. 

© 2017 The Authors. Published by Elsevier Ltd. 
This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

The main goal of maintenance is to achieve desirable system depend- 
ability whilst minimising cost [1] . Dependability is a term that encom- 
passes a range of attributes which include safety, reliability, availability, 
and maintainability [2] . Some industries are moving away from tradi- 
tional time-based or reactive maintenance regimes towards condition- 
based maintenance (CBM), where intervention is scheduled when mon- 
itoring data indicates asset deterioration [1] . 

CBM applications have explored different areas for cost-effective 
maintenance planning such as grouping maintenance strategies or up- 
dating maintenance models with prognostics information. Grouping 
maintenance actions together can reduce downtime and personnel costs 
through considering functionally or spatially related assets within the 
system [3–12] . Prognostics and health management (PHM) is an inte- 
gral aspect of CBM which focuses on system degradation management 
with the following main groups of activities [13] : 

• Anomaly detection: monitoring and detection of abnormal condi- 
tions in the system operation. 

∗ Corresponding author. 
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• Diagnostics: if an anomaly is detected, diagnose the cause of the 
fault. 

• Prognostics: predict the likely future degradation of the asset and 
estimate its remaining useful life. 

• Operation and maintenance planning: mitigate the effects of failure 
and reduce unnecessary planned maintenance. 

PHM techniques have emerged as promising solutions for cost- 
effective asset management and maintenance planning [14–16] . 
Namely, the connection between prognostics and maintenance enables 
updating maintenance plans with up-to-date remaining useful life (RUL) 
estimations [16–18] . 

The RUL denotes the time distance from the current prediction time, 
t p , to the end of the useful life (or failure time) of the system denoted 
EOL : 

��� = ��� − � � | ��� > � � (1) 

Given that remaining time after t p is random, uncertainty represen- 
tation mechanisms are needed to model RUL [19,20] . Fig. 1 shows the 
RUL prediction concept, where � = { � 1 , … , � � } denotes gathered data 
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Fig. 1. Remaining useful life prediction. 

samples up to the prediction point t p . The probabilistic estimation of 
the health state at t p can be performed through diagnosis methods (e.g. 
[21] ). 

Depending on the specific prognostics prediction method, the format 
of the RUL prediction results will be different [19,16] : 

• deterministic RUL values 1 (e.g. calculated employing neural net- 
works [22] ); 

• RUL values with confidence intervals ��� ± �� (e.g. estimated with 
hidden Markov models [23] ); 

• probability density function (PDF) of the RUL (e.g. derived using 
particle filters [14,24] ). 

So as to use prognostics results within CBM planning, one possibility 
is to parametrize prognostics prediction results [25] . For deterministic 
prediction results, the RUL value can be used directly assuming a con- 
stant degradation rate and confidence bounds can be used to estimate 
maximum and minimum boundary values [26] . As for the PDF of the 
RUL, the PDF can be parametrized through regression methods (e.g., 
Weibull regression [27,28] ), or alternatively mean, maximum and min- 
imum RUL values can be calculated [25] . 

Despite these advances, cost-effective CBM planning is far from triv- 
ial in complex industrial systems. Such systems are comprised of many 
potentially repairable assets, which can fail in different ways and with 
various effects. The operation of assets and the system is typically 
governed by dynamics which include time-dependent and conditional 
events and they cause complexities in the system reliability prediction 
and maintenance planning [29] . The use of combinatorial failure models 
(fault trees, reliability block diagrams) to model the failure logic of com- 
plex systems has disadvantages for maintenance planning. For instance, 
in a fault-tolerant system, the criticality of assets can change substan- 
tially over time [30] : in a system with two parallel redundant channels, 
when one fails the criticality of assets within the single remaining chan- 
nel increases. Combinatorial failure models have limited ability to rep- 
resent these situations. Therefore, system maintenance strategies based 
combinatorial failure models may also miscalculate dependability and 
maintenance costs. 

Several dynamic dependability techniques have emerged to enable a 
more accurate analysis of dynamic scenarios that include state changes 
and sequencing of failures [31] . The application of these techniques for 
CBM planning would enable a more accurate health assessment estima- 
tion compared with maintenance planning methods based on combina- 
torial failure models. In this paper, we argue that the increasing capa- 
bilities for prognostics and maintenance strategies along with dynamic 
dependability models create opportunities for improved dependability 
estimations and system maintenance planning. 

1 Deterministic RUL values are sometimes denoted as average RUL or mean residual life 
[16] . We will use the term RUL to denote deterministic RUL values and we will explicitly 
refer to the PDF of the RUL when needed. 

In that context, optimization of system maintenance remains an open 
research problem. Making progress in this area, in our view, requires in- 
corporating accurate prognostic-enhanced dynamic dependability mod- 
els into maintenance planning. Preliminary work on incorporating prog- 
nostics in a dynamic dependability model and informing asset-level 
maintenance planning has been done in [32,25,33] , but this solves only 
part of the problem. Moving from asset to system level maintenance re- 
quires incorporating grouping criteria suited for dynamic failure logic 
systems. Dynamic dependability models can be used for clustering tasks 
based on the criticality analysis of assets. However, the connection be- 
tween dynamic dependability models and potential maintenance strate- 
gies is complex because unforeseen events have effects on dependability 
which are hard to foresee a priori and cause effects on the dependability 
profile of the assets and system making further maintenance decisions 
harder. In particular, the specification of different groups of assets for 
maintenance at different intervals becomes hard because grouping cri- 
teria and clusters should change dynamically to optimise dependability 
and cost. 

In this paper, our aim is to address some of the above challenges in 
the dynamic planning of maintenance. The main contribution of this pa- 
per is the proposal of an advanced system-level dynamic maintenance 
planning method building on our earlier work on prognostics-enhanced 
dynamic dependability models for maintenance [25,33] . The core of 
the proposed approach is a system-level maintenance planning algo- 
rithm which coordinates predictive diagnostics activities and asset-level 
prognostics information, and interacts with the dynamic dependability 
model. 

The online predictive diagnosis algorithm classifies assets as criti- 
cal or non-critical according to their importance at the system level. 
The system maintenance planning algorithm takes this information and 
interacts with the dynamic dependability model to implement group- 
ing maintenance strategies and predict the consequence on the system 

health. The dynamic dependability model is updated with prognostics 
information, so as to yield well-informed, more accurate, condition- 
based suggestions for the maintenance of assets that have been iden- 
tified as critical and for the group-based reactive repair of assets that 
have been identified as non-critical. 

This paper is organized as follows. Section 2 presents related work. 
Section 3 introduces the prognostics-updated system maintenance ap- 
proach for dynamic systems. Section 4 presents the implementation of 
the proposed approach for asset and system level maintenance strate- 
gies. Section 5 applies the proposed approach to a power transmission 
substation case study. Section 6 discusses the applicability and limi- 
tations of the method and Section 7 presents conclusions and future 
prospects. 

2. Related work 

Condition-based maintenance planning has recently gained interest 
as a possible method of cost-effective maintenance planning for stochas- 
tically deteriorating assets and systems [34] . Different cost-effective 
maintenance strategies have been proposed for asset-level condition- 
based maintenance focusing on specific failure modes such as fatigue 
crack growth [14] or pitting corrosion [35] . 

When designing maintenance strategies for complex systems with 
multiple assets, engineers need to consider stochastic, structural, and 
economic dependencies between assets [36] . Stochastic dependency 
implies that asset degradation impacts the performance of other as- 
sets, structural dependency means that maintaining an asset implies the 
maintenance of other assets, and economic dependency addresses the 
difference between group and independent maintenance actions. 

For efficiency, maintenance strategies with economic dependencies 
must allow for the grouping of assets in different periods of mainte- 
nance. This grouping can be static or dynamic to reflect changes in op- 
erational circumstances [37] . Dynamic maintenance grouping methods 
can be divided into finite horizon planning (no online re-planning) and 
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rolling horizon planning (long term plan revised as new information 
becomes available). We will review techniques that deal with a rolling 
horizon because our work is focused on these systems. These techniques 
have been addressing various modelling challenges. Table 1 cites papers 
addressing in different ways the asset degradation model, the system 

failure logic structure, dependencies, and the use of prognostics. 
Degradation model . The majority of maintenance models assume ei- 

ther Gamma [3,4,7,11,9] or Weibull [5,6,8,10] distributions for the 
degradation modelling of system assets. The Gamma distribution mod- 
els a monotonic degradation process [38] . The Weibull distribution is 
a well-studied generic distribution, which integrates other distributions 
too (exponential, Rayleigh). Embedding predefined, well-studied, degra- 
dation processes enables the posterior analytical treatment and imple- 
mentation of optimization strategies. However, as demonstrated in [16] , 
the use of explicit prognostics information may lead to more robust 
maintenance strategies. Accordingly, we decouple the degradation mod- 
elling process from the maintenance planning process as in [12] . 
System structure . Early work has looked into series systems [3–

5,8,9,12] , while gradually series-parallel systems have been studied 
[6,10] . Recently, the influence of redundancy structures have been con- 
sidered studying K-out-of-N configurations [11] . This earlier work as- 
sumes that a system failure logic can be mapped to a combinatorial 
Boolean model for calculation of probability. This, however, is a sim- 
plistic assumption. In practice, assets interact in a manner that leads to 
a more complicated failure logic. They can have several inter-dependent 
failure modes forming a complex network of stochastically dependent 
failure modes often with dynamic temporal relations among them. 
Dependencies . We can see in Table 1 that stochastic dependencies 

have not been addressed for grouping maintenance strategies. Only 
Horenbeek and Pintelon [4] consider asset stochastic dependencies by 
including the influence of corrective repair actions on other subsystems. 
However, none of the reviewed works take into account the effect of 
operational changes in the system such as the activation of mechanisms 
which can trigger further reactions in the system. For multi-component 
systems without grouping maintenance strategies, degradation interac- 
tions have been taken into account, e.g. see [39] . Stochastic (and tem- 
poral) dependencies have been studied also through dynamic depend- 
ability models [31] , but for group-based maintenance planning these 
dependencies have not been considered because they cause complexi- 
ties in the analytic formulation. 
Prognostics . Some approaches integrate RUL prediction informa- 

tion in the maintenance modelling approach [4,7,10,12] . Aligned with 
this goal, we tailor maintenance strategies with up-to-date prognos- 
tics prediction results. The integration of asset prognostics and system 

evaluation is done taking into account dependencies between assets 
[40,41] . 

Table 1 
Maintenance grouping approaches with rolling horizon. 

Ref. Degradation 
model 

System 
structure 

Dependencies Prognostics 

[3] Gamma Series Economic No 
[4] Gamma Series Economic, 

stochastic, structural 
Yes 

[5] Weibull Series Economic No 
[6] Weibull Series, 

parallel 
Economic No 

[7] Gamma Series, 
parallel 

Economic Yes 

[8] Weibull Series Economic No 
[9] Poisson, Gamma Series Economic No 
[10] Weibull Series, 

parallel 
Economic Yes 

[11] Poisson, Gamma K-out-of-N Economic No 
[12] Independent Series Structural, economic Yes 

Grouping criteria . Following work in [37,3] all techniques displayed 
in Table 1 focus on minimising maintenance costs by balancing waste 
of useful life with increase in failure probability. For each specific ap- 
proach, this optimization problem has been constrained by including 
specific operation conditions such as imperfect maintenance actions [4] , 
maintenance opportunities [5] , dynamically changing contexts [6] , ef- 
fect of maintenance actions on system reliability [7,10] , limited person- 
nel [8] , age-based grouping [9] or loss of functionality [12] . From the 
system reliability perspective, one interesting alternative is to use im- 
portance measures to evaluate the degree to which an asset contributes 
to the system failure and accordingly group assets with similar mea- 
sures for joint maintenance. For instance, Vu et al. [10] use Birnbaum 

importance measures for defining maintenance strategies. We focus on 
importance measures too, but for dynamic failure logic instead of as- 
suming a combinatorial failure model. 

All the system maintenance models in Table 1 assume combinato- 
rial failure logic. We move beyond this assumption to address dynamic 
and repairable systems, taking into account economic and stochastic 
dependencies. In addition, we update the dynamic dependability evalu- 
ation model with prognostics prediction results. The evaluation of these 
systems is achieved through the integration of dynamic dependability 
evaluation models with alternative maintenance strategies. 

Dynamic dependability models enable the modelling and probabilis- 
tic analysis of dynamic failure logic systems with stochastic and tempo- 
ral dependencies (e.g., reconfigurable and fault-tolerant systems [42] ). 
There is a range of dynamic dependability models that address these 
dependencies: Boolean Driven Markov Processes [43] , Dynamic Fault 
Trees (DFT) [44] , Dynamic Bayesian networks [45] , Dynamic Reliabil- 
ity Block Diagrams [46] , State-Event Fault Trees [47] , Temporal Fault 
Trees [48] , or hybrid DFT models [49] (see [31] for a comprehensive 
overview). 

Apart from the analytic approaches displayed in Table 1 , there has 
been work focused on the use of stochastic graphical models [45] and 
simulation methods for maintenance planning. For instance, Petri nets 
have been used to evaluate the effect of maintenance parameters on 
the system performance for different maintenance strategies. Zille et al. 
[50] proposed a reliability centred maintenance strategy, Andrews et 
al. [51] introduced a railway track asset management model, and An- 
drews and Fecarotti [52] presented an integrated Petri net and Bayesian 
network modelling approach to evaluate the effect of design and main- 
tenance options on system performance. Similarly, Alrabghi and Tiwari 
have used discrete event simulations to analyse maintenance strategies 
for multi-component systems [53] , and Koutras et al. have employed 
semi-Markov processes with Monte Carlo simulations to analyse main- 
tenance strategies for complex multi-state systems [54] . 

In this work we employ stochastic graphical models. Specifically 
we focus on Stochastic Activity Networks (SAN), which is a variant of 
Stochastic Petri Nets [55] . We demonstrate that SAN enables the inte- 
gration of dynamic dependability models [56] , prognostics prediction 
information [25] , asset-level maintenance strategies [33] , and system- 
level dynamic grouping strategies (see Section 3 ). 

3. Prognostics-updated system maintenance modelling for 
dynamic failure logic systems 

Fig. 2 shows the proposed maintenance planning approach divided 
into offline and online activities and models. The offline assessment is 
divided into two parallel sequences of activities: system dependability 
and prognostics modelling. The system design is the starting point and 
it defines the functional operation of the system specifying how assets 
are arranged to perform the system function. Prognostics and depend- 
ability modelling activities follow system design and they join in the 
online evaluation part to update the dynamic dependability model with 
prognostics results. 
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Fig. 2. Prognostics-updated system maintenance approach for dynamic failure logic sys- 
tems. 

The first step in the dependability modelling sequence is the qualita- 
tive dependability assessment . The result of this activity is a dynamic de- 
pendability model which defines the various dynamic sequences of asset 
failures that potentially cause system failure (see Section 3.2 ). Different 
types of dynamic dependability formalisms are applicable at this stage 
[31] . In this paper, without loss of generality, we focus on Dynamic 
Fault Trees (DFTs) [57] (see Section 3.4 ). 

In parallel, the prognostics sequence starts with the asset selection 
step. Each asset may have a different degradation specification. To spec- 
ify a prognostics model, degradation equations or run-to-failure data 
are compulsory [19] . Therefore, the asset selection activity for prognos- 
tics evaluation is driven by the availability of data or equations. Ac- 
cordingly, different prognostics techniques can be considered to design a 
prognostics model for each asset [19] . 

Until this point, the process is performed at design time or offline. 
We then move to an online analysis process, that enables evolutionary, 
dynamic planning of maintenance during operation. 

The online analysis process is comprised of two sequences of activ- 
ities focused on regularly updating the dynamic dependability model 
with prognostics results and evaluating the criticality of assets. 
Prognostics results depend on the nature of the prognostics model 

[19] . One possibility to update the failure rate and maintenance ac- 
tions is to use the RUL estimation assuming a constant failure rate 
( � ≈ 1∕ ��� ) [26] . For prediction models which estimate a determinis- 
tic value (including confidence intervals) the RUL values can be mapped 
directly. As for the probabilistic RUL predictions with density values, 
maximum, minimum and mean RUL values can be extracted ( Fig. 1 ). 
We use this approximation to obtain the prognostics-updated dynamic de- 
pendability model . 

In order to determine the dynamically changing degree in which an 
asset contributes to system failure, we implement a criticality assessment . 
There are several importance measures that can be used to weigh the 
criticality of an asset [58,59] . The evaluation of importance measures 
for dynamic repairable systems is an open issue [60,61] . This paper uses 
the failure criticality index ( ‘criticality ’ for short) [62,30] . We use this 
index in an online context, and therefore the index is adapted as new in- 
formation becomes available. The aim is to classify assets as critical and 
non-critical into two dynamic clusters with an evolving membership. 

Based on the criticality and prognostics information, dynamic mainte- 
nance decisions are planned and represented on a prognostics-enhanced 
dynamic dependability and maintenance model . This model is connected 
back with the criticality assessment to continually monitor the health of 
assets. 

A number of techniques have been proposed in the literature for the 
offline activities showed in Fig. 2 (e.g., see [19,31,63] ). Therefore, in 
this paper we will focus on the online activities. For the sake of compari- 
son, we will also examine asset-level maintenance strategies [33] which 

use the same modelling process as in Fig. 2 , without considering the 
criticality assessment. The dynamic dependability and maintenance model 
could be quantified using analytic formulations or simulation. In the 
next subsection we will justify our choice. 

3.1. Analytic formulations versus simulation 

The failure logic of complex dynamic systems can be expressed in 
minimal cut-sequence sets (MCSQ), i.e. the dynamic counterpart of min- 
imal cut-sets [64] . 

Merle et al. introduced an analytic formulation for non-repairable 
dynamic systems with stochastic and temporal dependencies [65] . The 
canonical form of the system failure expression, denoted top-event (TE), 
is the disjoint sum of all its n independent MCSQs [66] : 

� � = 

� ∑

� =1 

���� � (2) 

Each MCSQ i defines the temporal combination of basic events (BE) 
that cause the TE occurrence. The length of the MCSQ depends on 
the minimal number of BEs that cause TE occurrence. Assuming that 
k events cause the TE: 

���� � = �� 1 �� � �� 2 �� � … �� � (3) 

where �� � is the operator that defines temporal logic, e.g. �� � = 

{ ���� , � ��� , � �� } [64] : 

• ���� � = �� 1 ���� �� 2 ∶ �� 1 and BE 2 occur simultaneously; 
• ���� � = �� 1 ���� �� 2 ∶ �� 1 occurs before BE 2 , and BE 2 has 
to occur; 

• ���� � = �� 1 ��� �� 2 : BE 1 occurs before BE 2 , but BE 2 does 
not need to occur; 

These operators can also be combined with classical combinatorial 
logic operators such as ��� , �� , etc. 

In order to analyse the failure expression, first it is necessary to re- 
move redundant MCSQ terms taking into account the priority of dy- 
namic operators [64] . The probabilistic failure expression can then be 
obtained by applying the inclusion-exclusion principle [67] . Finally, the 
corresponding probabilistic formula should be applied to each MCSQ 

term and operator separately [65] . 
The above algebraic framework can be used for dependability eval- 

uation of systems with non-repairable assets. However, the complexity 
of the mathematical formulation grows with the system size, and for 
dynamic systems with repairable assets, the logic and probabilistic for- 
mulas cannot be captured by the above semantics. 

A feasible alternative is to use simulation-based dynamic depend- 
ability techniques. The focus of these approaches has been centred on 
the quantification of the system failure probability through Monte Carlo 
simulations using reactive repair strategies, e.g. [44] . In this work we 
will use simulation-based techniques for the implementation of dynamic 
dependability and maintenance model . 

In the next subsection we define the dynamic dependability and main- 
tenance model . In Section 4 we explain the representation of asset and 
system maintenance strategies. 

3.2. Dynamic dependability and maintenance model 

Fig. 3 shows the proposed online maintenance modelling approach 
expanding the online activities in Fig. 2 . 

An informed system maintenance strategy must be based on an over- 
all picture of the systems health which is established through a set of 
activities and models: 

• Dynamic dependability and maintenance model : a probabilistic model 
that integrates prognostics and maintenance decisions and quan- 
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Fig. 3. Proposed online maintenance approach. 

tifies failure probabilities first at asset level and then at system 

level. 
• Criticality assessment : a system model, which identifies the degree of 
contribution of each asset to the failure of the system. 

• Dynamic maintenance planning : maintenance decisions derived from 

criticality assessment. These define group maintenance and their ef- 
fects redefine the future health of assets and the next iteration of the 
process. 

Each asset in the dynamic dependability and maintenance model is 
modelled with three states. The transition from working (W) to failed 
(F) state is governed by the failure rate �( � ) . This failure rate can be up- 
dated with up-to-date degradation prediction information coming from 

prognostics models [26,25,33] : 

�( � ) = 

{ 
�0 0 < � < � � � 

�� � = � � � 

(4) 

where �0 is the initial failure rate estimate typically taken from a relia- 
bility database, � � � is the k -th prediction time instant, and �k is the fail- 
ure rate at k -th prediction time instant. The number of prediction time 
instants depends on the specific prognostics application (and available 
data) varying from 1 up to P prediction instants � = {1 , … , � } . 

Prognostics prediction times depend on the asset and the application 
context. In an online monitoring context, RUL predictions can be per- 
formed continuously as new data is gathered from the asset under study. 
However, early RUL predictions may not be very accurate, whereas as 
the system approaches its end of life, RUL predictions will become more 
accurate (see [68] for an analysis of the effect of prognostics prediction 
errors on maintenance planning). In this case, a trade-off between accu- 
racy and timeliness needs to be made. In contrast, in an offline applica- 
tion context, the data is not sampled continuously but at regular time 
intervals, e.g. transformer dissolved gas data may be sampled quarterly 
or six times a year [69] . Therefore the prediction time instants in this 
case will be determined by the availability of monitoring data. As the 
health of the asset deteriorates (and RUL decreases) the sampling regime 
may be increased to closely monitor the aging of the asset and perform 

more frequent prognostics predictions. 
Once the asset fails, there are two options depending on the main- 

tenance strategy. If the maintenance is implemented at the asset level, 
it is repaired with a repair rate �( � ) , which models the mean time to re- 
pair from failed to working state (see Section 4.1 ). However, for system 

maintenance strategies, if the asset is not critical, it is possible to leave 
the asset in the failed state until the maintenance planning diagnoses 
a critical asset triggering a group maintenance signal GM (see Section 
4.2 ). 

It is possible to avoid the transition to the failed state by perform- 
ing maintenance prior to the asset failure. The transition to the main- 
tenance state (M) depends on the maintenance strategy and it is deter- 
mined by the transition rate � ( � ) . From the maintenance state, the asset 

needs a time interval defined by �( � ) to return back to the working state. 
Asset maintenance decisions are applied independently to each asset i 
( ∀����� � ∈ ������ ∶ 1 ≤ ����� � ≤ �) with an individual maintenance rate 
� i . Maintenance decisions at the system-level apply only to critical as- 
sets because the rest of non-critical assets are allowed to fail and they 
are repaired through group maintenance strategies. 

The main assumptions adopted in this paper are twofold: assets are in 
as bad as old state after repair (as in other stochastic models, e.g. [51] ), 
and there is availability of unlimited maintenance resources. We plan 
to analyse imperfect and resource constrained maintenance strategies 
in future work (see Section 7 ). 

The online maintenance approach is implemented through the SAN 

formalism introduced in the following subsection. After that, in Section 
3.4 , we will introduce the Dynamic Failure Logic block in Fig. 3 (or Dy- 
namic Dependability Model in Fig. 2 ) using SAN modelling mechanisms. 

3.3. Preliminaries on stochastic activity networks 

The Stochastic Activity Networks (SAN) formalism was first intro- 
duced in the mid-1980s [70] and it has been used for many different 
applications. For the sake of readability and simplicity we will introduce 
the main SAN modelling constructs semi-formally in this subsection. For 
a full formal definition of SAN refer to [55] . 

SAN extends stochastic Petri Nets generalizing the stochastic rela- 
tionships and adding mechanisms to construct hierarchical models. Fig. 
4 shows SAN modelling primitives [55] . 
Places represent the state of the modelled system. Each place con- 

tains a certain number of tokens defining the marking of the place. A 
standard place contains an integer number of tokens, whereas extended 
places contain data types other than integers (e.g., floats, array). We 
will denote the marking function of the place x as m( x ), e.g., m( x ) = 1 
means that the place x has a marking equal to 1. 

There are two types of activities : instantaneous which complete in neg- 
ligible amount of time, and timed whose duration has an effect on the 
system performance and their completion time can be a constant or a 
random value. When it is a random value, it is ruled by a probability 
distribution function defining the time to fire the activity. 
Activities fire based on the conditions defined over the marking of the 

net and their effect is to modify the marking of the places. The comple- 
tion of an activity of any kind is enabled by a particular marking of a set 
of places. The presence of at least one token in each input place enables 
the firing of the activity removing the token from its input place(s) and 
placing them in the output place(s). 

Each activity has a reactivation function that defines when the activ- 
ity is aborted and a new activity time is immediately obtained from the 
activity time distribution. The reactivation function provides a mecha- 
nism for restarting activities that have been activated, either with the 
same or a different distribution. To this end it is necessary that both the 
reactivation predicate holds for the new marking and for the marking 
in which the activity was originally activated; and the activity remains 
enabled. 

Another way to enable a certain activity consists of input gates and 
output gates . Input and output gates make the SAN formalism general 
and powerful enough to model complex real situations. They determine 
the marking of the net based on user-defined C++ rules. 

Fig. 4. Notation of SAN elements. 
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Input Gates (IG) control the enabling of activities and define the 
marking changes that will occur when an activity completes. A set of 
places is connected to the input gate and the input gate is connected 
to an activity. A Boolean condition (or guard) enables the activity con- 
nected to the gate and a function determines the effect of the activity 
completion on the marking of the places connected to the gate. Output 
Gates (OG) specify the effect of activity completion on the marking of 
the places connected to the output gate. An output function defines the 
marking changes that occur when the activity completes. 

The performance measurements are carried out through reward func- 
tions defined over the designed model. Reward functions are evaluated 
as the expected value of the reward function and they are defined based 
on: 

• the marking of the net ( state reward function ), e.g. quantification of 
the probability for being in a specific place; 

• completion of activities ( impulse reward function ), e.g. count the num- 
ber of times an activity triggers within a time interval. 

In order to alleviate substantially the state explosion problem SAN 

makes use of reduced base models [71] . This concept enables the im- 
plementation of join operators and hierarchical modelling of complex 
systems. 

Fig. 5 shows a simple repairable asset example. In this case the SAN 

places are initialized to working state < m( � ) , m( � ) > = < 1 , 0 > . The token 
will move from W to the F place according to the distribution determined 
by fault timed activity. The time to failure will be calculated with 
the parameters of the fault activity and after the time to failure has 
elapsed the system will move to the failed state < 0 , 1 > . After moving to 
the failure state the time to repair will be calculated from the repair 
timed distribution and the token will move from F to W place after the 
calculated time to repair has elapsed. 

In this paper we focus on Monte Carlo simulations for the quantifi- 
cation of different probabilities. If we want to evaluate the failure prob- 
ability or availability we can use the reward functions indicated in Fig. 
5 with F _ Rew and W _ Rew reward variables respectively. These state- 
ments are evaluated for a large number of Monte Carlo trials and the 
expected value of these random variables evaluated at different time 
instants will give the failure probability and availability indicators. 

Formally, if we want to evaluate the probability of a generic place x , 
at time instant t , first we define the reward function, r x ( t ), as follows: 

� � ( � ) = 

{ 
� � ( � ) + 1 �� � ( � ) = 1 

� � ( � ) �� � ( � ) = 0 
(5) 

Note that the marking of the place x will change according to the 
SAN atomic logic throughout the lifetime of the system. Besides, for 
different Monte Carlo trials, the transition times and marking values 
will be different. If we perform N Monte Carlo trials, the expected value 
of the reward function of the place, r x , (probability for being in place x 
at time t ), is calculated as follows: 

�̂ � ( � ) = 
1 

� 
Σ� 
� =1 � 

� 
� ( � ) , � ∈ � (6) 

where E denotes the set of places in the system e.g., � = { � , � } in 
Fig. 5 . 

Fig. 5. Repairable asset example in SAN. 

The inverse transform sampling method [72] extracts the stochas- 
tic occurrence times of timed activities using Monte Carlo simulations. 
Let CDF be a cumulative distribution function, r be a random variable 
drawn from the uniform distribution � ∼ � ([0 , 1]) , and TTF the time to 
fire the activity. Then, the inverse sampling method applies the relation 
� −1 ( � ) = � � � to draw the time to fire according to the CDF. 

The same concept as in Eq. (6) applies to the calculation of the num- 
ber of actions. In this case impulse reward functions are defined over 
the activity of interest. Let us assume that we define for the activity a 
the impulse reward, r a , which is dependent on the activity completion 
time or time to fire, TTF a : 

� � = 

{ 
1 �� � = � � � � 

0 ��ℎ������ 
(7) 

For each Monte Carlo trial the TTF a will vary according to the ran- 
dom number r . We can evaluate the number of times an activity a fires 
during a time interval Δ� = � � − � 0 after performing N simulations as 
follows: 

�̂ � (Δ� ) = 
1 

� 
Σ� 
� =1 Σ

� � 
Δ� = � 0 

� � 
� (Δ� ) , � ∈ � (8) 

where A denotes the set of activities in the model, e.g. in Fig. 5 � = 

{ ����� , ������ } . 
Note that the required number of iterations N in Eqs. (6) and (8) de- 

pend on the required confidence level for the reward variables [71] . In 
this work all the experiments have been performed with a confidence 
level of 0.99 and a minimum confidence interval of 1e-6. Accordingly, 
the simulations are halted when all the failure probability estimations 
satisfy the confidence interval constraints (worst case � ≈3e6) . 

The SAN models which include the specified SAN elements are mod- 
elled in a SAN atomic model (see Fig. 7 Reusable Block column). The 
join operator links through a compositional tree structure different SAN 

models in a unique composed model . As shown in Fig. 8 places of differ- 
ent atomic models are joined to represent interactions between different 
SAN models. It is possible to link atomic models, composed models, or 
combinations thereof. In the tree structure, the composed and atomic 
SAN models are linked through join operators using shared places be- 
tween the composed and atomic SAN models. Thus, the analyst can focus 
on specific characteristics of the asset behaviour through fit-for-purpose 
atomic and composed models and later join independently validated 
models to obtain a more complex composed system model. 

The SAN model in Fig. 5 can be reused to link the places with other 
assets. For instance, if we want to initiate another (timed or immediate) 
activity in another asset when the failure of the model in Fig. 5 occurs, 
we can join the F place with the destination SAN model through SAN 

join mechanism (see Fig. 8 for an example). For the composed system 

the quantification of system probabilities is exactly the same as for the 
simple system in Fig. 5 . In this case the reward function in Eq. (5) must 
be defined in terms of the system failure place ( TE in Fig. 8 ). 

3.4. Dynamic failure logic modelling in SAN 

The dynamic failure logic modelling process is the same for asset 
and system maintenance strategies. The main difference between these 
strategies is on the asset-level modelling (see Fig. 3 and Section 4 ). 

Fig. 6. Subset of Dynamic Fault Tree gates. 
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Fig. 7. Specification of repairable DFT gates in SAN. 

The dynamic failure logic is formalized using a dynamic dependabil- 
ity model and in this case we use repairable DFTs [57] . The repairable 
DFT model links low-level repairable basic events (i.e. assets in Fig. 3 ) 
with the system-level failure events (top-event) through dynamic gates. 
Repairable DFT gates are defined as follows [44] : 

(a) PAND: � = � ��� ( � 1 , … , � � ) ; Y is true iff all events { � 1 , … , � � } 

are true and they occur in order: � 1 ⊲ ⋯ ⊲ � � ; otherwise is false 
( Fig. 6 a). 

(b) Spare: � = �� ( � �� 1 
, … , � �� � 

, � �� 1 
, … , � �� � 

) ; Y is true iff all active 
events { � �� 1 

, … , � �� � 
} and all spare events { � �� 1 

, … , � �� � 
} have 

failed, otherwise is false . Its inputs can be in standby, working or 
failed state (cf. Fig. 6 b). 

(c) FDEP: [ � 1 , … , � � ] = � ��� ( � ) ; { � 1 , … , � � } is true if the trigger 
event T occurs or they fail by themselves; otherwise is false (cf. Fig. 
6 c). 

A fourth gate called sequence enforcing gate has also been defined 
in [57] . However note that this gate can be implemented using a spare 
gate [73] and also note that the FDEP gate can be modelled using OR 
gates [27] . 

In this paper we will focus on PAND and SPARE gates. Fig. 7 shows 
the specification of repairable DFT gates in SAN using state machines 
and their corresponding SAN model [56] . Note that we have not in- 
cluded the SPARE gate in Fig. 7 because this is modelled as an AND 
gate, including basic events which can be in standby states (e.g. see Fig. 
10 ) and implementing the activation logic between basic events. In the 
state machine the initial state is highlighted in grey, failure states are 
identified with doubled circles, and F x and R x indicate failure and re- 
pair events of x . The resultant reusable blocks are used to link with basic 
events and other gates. Note also that the DFT gates in Fig. 7 are directly 
extendible to gates with N input events. 

So as to evaluate the output of a gate it is necessary to link the gates 
in Fig. 7 with basic events (i.e., assets). To this end we synthesize all 
the expressions in the DFT model using the join operator in SAN [56] . 

Fig. 8 shows a synthesis example assuming assets with independent re- 
active repair strategies as also shown in Fig. 5 . 

At the lowest level first we model reactive repair strategies for each 
asset in the system ( Asset1 , Asset2 , Asset3 ) with independent re- 
pair rates. Then we synthesize the PAND operation by linking the A and 
B places of the PAND gate in Fig. 7 with KO _ Asset1 and KO _ Asset2 
places respectively. To this end, we use the join operator of SAN. This 
will result in the creation of the PAND _ A1A2 reusable block. Then we 
link the output place of this submodel ( PAND _ Out ) and the KO place of 
the Asset3 with the inputs of the OR gate in Fig. 7 . 

The system-level failure probability is then quantified by monitor- 
ing the Y place of the OR gate (renamed to TE in Fig. 8 ) which indi- 
cates the occurrence logic of this gate (see Fig. 7 ) and the failure of 
the system in Fig. 8 . The marking of a place is monitored through re- 
ward variables as explained in Section 3.3 . In this case we replace the 
place x in Eq. (5) with the place TE of Fig. 8 . The marking of this place 
will be dependent on the underlying failure logic ( PAND gate) and asset 
( Asset1 , Asset2 , Asset3 ) models. The asset-level failure probabil- 
ity is quantified by monitoring the failure place of the asset under study, 
e.g. for Asset3 we need to define a reward variable by replacing x with 
KO _ Asset3 in Eq. (5) (see also Fig. 5 ). 

Fig. 9 shows the system level failure probability quantified with 
RAATSS [44] and SAN models with constant hypothetical failure and re- 
pair parameters ( �1 = 0.1 years − 1 , �1 = 2 years − 1 , �2 = 0.05 years − 1 , �2 = 1 
years − 1 , �3 = 0.5 years − 1 , �3 = 3 years − 1 ). RAATSS implements repairable 
DFT models for assets with reactive repair strategies based on Adaptive 
Transition Systems [44] . 

Results shown in Fig. 9 confirm the validity of the DFT gates pro- 
posed in Fig. 7 and the synthesis process shown in Fig. 8 . These con- 
cepts can be generalized for more complex systems and it is possible to 
include reconfiguration activities so as to activate standby elements by 
setting their standby place when required [42] , as in the Activate 
place in Fig. 10 . We use the same modelling process throughout the 
paper to evaluate the system failure probabilities at asset and system 

levels. 
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Fig. 8. DFT synthesis example. 

4. Multi-level maintenance modelling for dynamic failure logic 
systems 

In this section we will present detailed maintenance modelling con- 
cepts to represent condition-based asset and system level maintenance 
strategies based on the approach shown in Fig. 3 . 

4.1. Asset-level maintenance strategies 

Condition-based maintenance strategies can use prognostics predic- 
tions to adapt the maintenance schedule and extend the useful life of 
the asset. As shown in Fig. 3 , the maintenance instant � ( � ) is defined as 
[74] : 

� ( � ) = 
1 

��� ( � � ) − �� 
(9) 

where RUL ( T p ) is the remaining useful life at prediction time T p and SF 
is a safety factor which integrates the time required to trigger mainte- 
nance and uncertainties associated with the RUL prediction. 

The selection of the SF for timely maintenance decision making de- 
pends on two factors. The first is the time needed to trigger mainte- 

nance, and this is asset and failure specific. For instance, offshore wind 
turbines require travel time which is dependent on the weather and sea 
conditions [75] . The second factor is the uncertainty associated with 
RUL prediction. Assuming deterministic RUL predictions with the con- 
fidence interval CI , the final predictions will be ��� ± �� . In order to 
avoid failure occurrences, the most conservative SF may be selected as- 
suming the worst case scenario, i.e. the sum of the confidence interval 
and maximum time needed to trigger the asset maintenance. 

Accordingly, when a new prognostics prediction is performed at any 
prediction time instant T p , the condition-based maintenance schedule 
can be adapted with up-to-date condition information of the asset: 

� ( � ) = 

{ 
� 0 0 < � < � � � 

� � � = � � � 

(10) 

where � 0 is the initial maintenance rate, � � � is the k -th prediction time 
instant, and � k is the maintenance rate at k -th prediction time instant 
as defined in Eq. (9) . 

Fig. 10 shows the asset-level condition-based maintenance model im- 
plemented in SAN divided into Asset , Control , and Maintenance 
blocks. 

178 



J.I. Aizpurua et al. Reliability Engineering and System Safety 168 (2017) 171–188 

Fig. 9. Failure probability assessment of the system in Fig. 8 . 

Fig. 10. Asset CBM model for asset-level maintenance. 

The Asset block integrates OK , KO , StandBy and Activate 
places with Fail and Repair timed activities and an instantaneous 
activity Inst , which links StandBy and Activate places. The 
Fail activity is updated with prognostics prediction results stored in 
the Preds extended place (in the Control block). When the as- 
set is repaired, it remains in the StandBy state until it receives an 
Activate signal from the reconfiguration mechanism. 

The Control block implements the system update actions through 
the Check OG. This block is executed deterministically, every Det 
time period ( Δ� simulation timestep) controlling the marking of the 
sampling place. The Fail and MaintCBM activities in the Asset 
block are reactivated and updated with new transition rates via the 
Lambda and Omega extended places respectively ( �( � ) and � ( � ) in Fig. 
3 ). The SF place stores the safety factor to calculate � ( � ) (cf. Eq. (9) ). The 
update logic embedded in the Check OG monitors the prediction time 
instants stored in Preds , updates Lambda and Omega places, and en- 
ables their reactivation through the React extended place. Algorithm 

1 defines the prognostics update process implemented in the Check 
OG. 

Algorithm 1. Update of failure and maintenance rates in SAN using 
prognostics prediction information. 

1: for � = 0 ∶ Δ� ∶ � � do ⊳ throughout the mission time 
2: if t = � � �,� 

, ∀����� � ∈ ������ ∶ 1 ≤ � ≤ � , k = {1,…,P} then ⊳ prognostics prediction instant � � � for the i-th asset 
3: �� ( � ) = 1∕ ��� �,� ⊳ update failure rate with prognostics at k-th prediction instant for the i-th asset 
4: � � ( � ) = 1∕( ��� �,� − �� � ) ⊳ update CBM rate with Eq. (9) , assuming exponential distribution 
5: �������� ( ����� � , � � � , �� ( � )) ⊳ resample the failure distribution with the new �� ( � ) in SAN 

6: �������� ( ����� � , � � � , � � ( � )) ⊳ resample the CBM distribution with the new � � ( � ) in SAN 

7: end if 
8: end for 

In Algorithm 1 , if the time equals the prediction time � � � (where 
� = {1 , … , � } and P denotes all the prediction instants), of any of the 
prognostics models of any asset ( ∀����� � ∈ ������ ∶ 1 ≤ � ≤ �), we up- 
date the corresponding asset’s failure rate and condition-based main- 

Fig. 11. Online maintenance planning sequence. 

tenance rate in Eq. (9) with the newly obtained RUL prediction. The 
resampling property is already implemented in SAN through reactiva- 
tion functions (see Section 3.3 ). Line 5 updates the Fail activity and 
line 6 updates the MaintCBM activity obtaining new activity times 
drawn from the exponential distribution with the prognostics-updated 
parameters. 

The Maintenance block implements planned shutdown events. 
The MaintCBM timed activity models the � ( � ) event in Fig. 3 and Eq. 
(9) . MaintCBM has a reactivation logic to update the transition rate to 
the Maint place according to prognostics prediction results and predic- 
tion instants stored in the Preds place. The MaintDuration activity 
models the �( � ) event in Fig. 3 . 

Accordingly, when modelling asset maintenance strategies, each as- 
set in the DFT model (e.g., see Fig. 8 ) is modelled using an instance of 
the model shown in Fig. 10 with the corresponding asset-specific pa- 
rameters. 

4.2. System-level maintenance strategies 

The system group-based maintenance approach uses all the activities 
and models in Fig. 3 . Fig. 11 shows the high-level operation sequence 
comprised of four sequential steps: 

(a) Dynamic dependability and maintenance model informs maintenance 
planning about the health status of assets and failure time instants 
throughout the lifetime (see Section 4.2.1 ). 

(b) Dynamic maintenance planning calls criticality assessment to assess op- 
erative assets’ criticality. 

(c) Criticality assessment diagnoses if the asset under study is critical (see 
Section 4.2.2 ). 

(d) The dynamic maintenance planning implements maintenance actions 
depending on the criticality of assets (see Section 4.2.3 ). 

The criticality assessment is implemented through C++ libraries 
which are connected with the SAN model. In this way the criticality as- 
sessment can be called as a conventional function with its input param- 
eters from any SAN model (see Section 4.2.2 ). 

4.2.1. Dynamic dependability and maintenance model 
Assets with system-level maintenance are modelled in SAN as 

shown in Fig. 12 divided into Asset , Control , Maintenance , and 
System blocks. The Asset , Control , and Maintenance blocks 
perform in the same manner as for asset-level maintenance models (see 
Section 4.1 ). 

The System block implements waiting options according to the 
system maintenance strategy. That is, GroupRep can trigger group 
repair actions when WaitCritical is activated and MaintCBM 
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Fig. 12. Asset CBM model for system-level maintenance. 

can trigger CBM actions when EnableSystem _ CBM is activated. Be- 
sides, the System block triggers the criticality analysis by setting the 
CheckCriticality place and calling the criticality assessment when 
there is a failure occurrence (through the CriticalityFail OG), 
repair activity (through the CriticalityRep OG), or maintenance 
action (through the CriticalityCBM OG). The RCrit activity trig- 
gers repair actions of critical assets in case the CBM action is missed, 
with the same parameters as GroupRep activity. 

The Dynamic Failure Logic block in the Dynamic Dependability and 
Maintenance model ( Fig. 3 ) implements in SAN the failure logic of the 
DFT gates and links failed states of the assets with the failure logic (see 
Section 3.4 ). In parallel, after every failure, repair or maintenance occur- 
rence of any asset, the marking of CheckCriticality is set, and the 
health state and failure time information of each asset ( KO , FailTime 
places in Fig. 12 ) are sent to the criticality assessment (see Section 4.2.2 ). 

After diagnosing if there is a critical asset, maintenance decisions 
are adopted by the dynamic maintenance planning . This activity changes 
the marking of the WaitCritical and EnableSystem _ CBM places 
depending on the specific situation, and accordingly it triggers group- 
based and critical assets maintenance actions, respectively. 

The MaintCBM activity is a stochastic event and the transition time 
is extracted according to the inverse transform method ( Section 3.3 ). 
There may be cases that the Fail activity fires faster than MaintCBM 
activity, and the asset transits to the KO state. The RCrit activity re- 
pairs individual critical assets that miss the transition to the Maint 
place. If we change the MaintCBM to a instantaneous activity, then 
the system failure probability will be always zero because preventively 
we move the asset to a safe state as soon as it is diagnosed as critical. 
We have used this strategy to validate the correctness of the diagnostics 
function. 

4.2.2. Criticality assessment 
The goal of this module is the identification of assets that cause the 

system failure. The criticality of assets changes throughout the lifetime 
of the system due to the simultaneous occurrence of failure, repair and 
maintenance events. For instance, in the example shown in Fig. 13 , the 
criticality, cr ( t ), changes at different time instants as follows (critical 
paths are indicated with a dashed line and failed events are indicated 
with a double circle): 

a) �� ( � 0 ) = { �} 

b) Asset B fails with � 0 < � < � 1 ; �� ( � 1 ) = { �, �} 

c) Asset A fails with � 1 < � < � 2 ; �� ( � 2 ) = { �, �} 

d) Asset B is repaired with � 2 < � < � 3 ; �� ( � 3 ) = { �, �} 

The criticality of dynamic repairable systems can be evaluated with 
indicator functions and failure timestamps of all the basic events of the 
system. The indicator function I i takes values in the set  = {0 , 1} and 

Fig. 13. Criticality change example. 

Fig. 14. Criticality assessment. 

indicates the actual health state of the basic event i . That is, I i = 1 if 
asset i is in the failed state, I i = 0 if it is working. The failure timestamp 
� � � 

indicates the failure occurrence time of the basic event i : � � � > 0 if 
failure occurred, � � � = 0 if working or repaired. 

Accordingly, for the implementation of the criticality assessment 
we use a parallel health monitoring DFT model which implements the 
same dynamic failure logic as the dynamic dependability and maintenance 
model , but it is only used for diagnosis purposes and not probabilistic 
quantification. It takes health state indicators and failure time instants 
of all the assets and evaluates their criticality. 

If we want to foresee which are the critical assets that can cause the 
system failure occurrence, one possibility is to change the indicator func- 
tion of each operative asset to the failed state and evaluate the system 

failure expression, diagnosing the system-level effect for each potential 
asset failure. Every time there is a change of health state in any asset 
(failure, maintenance or repair), it is necessary to check if the failure 
of an operative asset would cause the system failure, given the specific 
operation conditions. Fig. 14 shows the criticality analysis assuming 
that we are interested in evaluating the criticality of the Asset i at 11.5 
time units. Note that the asset models in the criticality assessment are 
comprised of health state indicators and the failure timestamps. 

This concept can be integrated within the SAN modelling formalism 

as a standalone C++ library which can be used at runtime during the 
SAN model simulation. Accordingly, we have created the corresponding 
libraries to implement and evaluate the qualitative outcome (i.e., criti- 
cality) of DFT repairable gates as shown in Table 2 . The behaviours of 
repairable DFT gates are defined according to their input events (in 1 , 
in 2 ), which can be extended to an arbitrary number of input events. 

Instantiating and linking the inputs and outputs of the gates in 
Table 2 according to the system failure logic enables the qualitative 
criticality assessment of the effect of a low-level basic event failure on 
the system failure occurrence. For instance, the criticality assessment 
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Table 2 
C++ libraries for the qualitative DFT assessment. 

Function Description 

{ � ��� , � � ��� } = AND ( [ � �� 1 , � � 1 ] , [ � �� 2 , � � 2 ] ): 
 �� 1 × IR + 

�� 1 
×  �� 2 × IR + 

�� 2 
→  ��� × IR + 

��� 

� ��� = 1 iff � �� 1 = 1 and 
� �� 2 = 1; � � ��� = max( � � 1 , � � 2 ) 

{ � ��� , � � ��� } = OR ( [ � �� 1 , � � 1 ] , [ � �� 2 , � � 2 ] ): 
 �� 1 × IR + 

�� 1 
×  �� 2 × IR + 

�� 2 
→  ��� × IR + 

��� 

� ��� = 1 iff � �� 1 = 1 or 
� �� 2 = 1; � � ��� = min( � � 1 , � � 2 ) 

{ � ��� , � � ��� } = PAND ( [ � �� 1 , � � 1 ] , [ � �� 2 , � � 2 ] ): 
 �� 1 × IR + 

�� 1 
×  �� 2 × IR + 

�� 2 
→  ��� × IR + 

out 

� ��� = 1 iff � �� 1 = 1 and 
� �� 2 = 1 and � � 1 < � � 2 ; 
� � ��� = max( � � 1 , � � 2 ) 

model in Fig. 13 is instantiated as follows: 

{ � �� , � � �� } = �� ( ���� ([ � � , � � � ] , [ � � , � � � )] , 

��� ([ � � , � � � ] , [ � � , � � � ]) , [ � � , � � � ]) (11) 

Assuming that the health state of the system in Fig. 
13 is < � � , � � , � � , � � > = < 1 , 1 , 0 , 0 > and failure times are 
< � � � 

, � � � 
, � � � 

, � � � 
> = < 12 , 8 . 5 , 0 , 0 > ; the criticality result would be 

(cf. Fig. 13 c): I TE = 1 only iff I C = 1 or I D = 1, because � � � > � � � . 
To generate the system-level failure expression the designer has to 

know beforehand the DFT failure logic of the system ( Dynamic Depend- 
ability Model in Fig. 2 ). Based on this logic the designer needs to synthe- 
size the failure logic in a C++ library and link the library with the SAN 

model. The generated library will instantiate the gates in Table 2 ac- 
cording to the system-specific failure logic (see Eq. (11) for a library 
example). The link between the SAN model and C++ libraries enables 
the use of the generated logic function from the SAN model at runtime, 
and the foresight of which are the critical assets at each simulation time 
instant. 

Algorithm 2. System level maintenance algorithm. 

1: for � = 0 ∶ Δ� ∶ � � do ⊳ for all the mission time 
2: if ( CheckCriticality i ), ∀����� � ∈ ������ ∶ 1 ≤ � ≤ � then ⊳ check if the failure, CBM, or repair of any asset occurs 
3: for � = 1 ∶ �

4: If (m( �� ����� � ) ∥ m( ������� ����� � )) then ⊳ identify which are the operative assets 

5: let m( �� ����� � ) = 1 ⊳ change asset state to failed to check if it is critical 

6: �� � ← � ����� ����� ([ � 1 , � � 1 
] , [… , …] , [ � � , � � � 

]) ⊳ asses the criticality if asset j would fail 
7: if �� � = ���� then ⊳ If it is a critical asset 
8: � ( ������������ _ ��� ����� � ) = 1 ⊳ Enable the CBM action 

9: end if 
10 end if 
11: end for 
12: if � ( ������������ _ ��� ����� � ) = 1 , ∀i ∈N then ⊳ If we have identified a critical asset and enabled CBM 

13: for � = 1 ∶ � do ⊳ Among all the system assets 
14: If � ( �� ����� � ) then ⊳ Check which are the non-critical failed assets 

15: � ( ������������ ����� � ) = 1 ⊳ And activate group-repair of non-critical assets 

16: end if 
17: end for 
18: end if 
19: end if ⊳ at this point, the effect of the fault of the asset i in the criticality has been checked 
20: end for 

The criticality assessment evaluates the system failure occurrence 
given input conditions, but it does not affect directly the dynamic depend- 
ability and maintenance model . This model is connected with the dynamic 
maintenance planning through the implementation of waiting-to-repair 
and waiting-to-maintain signal options as shown in Fig. 12 . Therefore, 
the criticality assessment informs the dynamic maintenance planning , and 
this impacts on the performance of the dynamic dependability and main- 
tenance model through repair and maintenance decisions. 

4.2.3. Dynamic maintenance planning 
The dynamic maintenance planning module monitors actively the criti- 

cality of all the operative assets through the criticality assessment module 

so as to adapt to the failure, repair, and maintenance events. We keep 
track of failure, repair and maintenance events and failure time instants 
throughout the simulation by monitoring the marking of the places in 
the SAN model ( Fig. 12 ). Every time the dynamic maintenance planning 
calls the criticality assessment , a criticality signal, cr , will be generated 
for each operative asset. 

In order to trigger a group maintenance action the dynamic mainte- 
nance planning has to identify a critical asset. Two actions are adopted, 
depending on whether the asset is critical or non-critical (see Fig. 12 , 
System block). 

1. Critical asset: the maintenance planning activates the 
EnableSystem _ CBM place immediately after diagnosing a 
critical asset. Thereby, if the asset is critical and it is in the OK state, 
it will be maintained according to the condition-based maintenance 
interval implemented through the MaintCBM activity. If the Fail 
activity triggers before MaintCBM , the critical asset will move 
first to the KO state, and then it will be repaired through RCrit 
activity. 

2. Non-critical asset: if the asset is in the KO state, it will be repaired 
immediately after receiving the WaitCritical signal. The main- 
tenance planning will broadcast the WaitCritical signal to all 
the failed non-critical assets as soon as a critical asset is diagnosed. 

Algorithm 2 shows the grouping process for system-level condition- 
based maintenance strategies evaluated throughout the mission time T m : 

• Lines 2-6 : if there is any fault among all the system assets, or if 
any asset is repaired or maintained, CheckCriticality i is ac- 
tivated ∀ ����� � ∈ ������ ∶ 1 ≤ � ≤ � ( Fig. 12 ). Then we check the 
criticality of all the remaining operative assets in the system through 
the criticality analysis. 

• Lines 7-9 : if any of the operative assets are critical, cr j , then we 
enable the condition-based maintenance for the asset j . 

• Lines 12-18 : if there is any critical asset in the system, we repair 
all the failed assets together by enabling the group-based repair. 

The outcome of the criticality assessment is the system-level indica- 
tor function I TE ( t ) which indicates if the given input conditions at time 
t cause the system failure (see Fig. 11 ). According to Algorithm 2 the 
dynamic maintenance planning can check the criticality of all the opera- 
tive basic events in the system to foresee a critical failure occurrence. 
The dynamic maintenance planning takes this information and decides to 
trigger a group repair or wait until a critical failure occurs. 

181 



J.I. Aizpurua et al. Reliability Engineering and System Safety 168 (2017) 171–188 

Fig. 15. System failure probability with different maintenance strategies for the DFT in 
Fig. 13 . 

Table 3 
Repair and maintenance actions in Fig. 15 . 

Asset Asset-level System-level 

# CBM # Repair # CBM # GroupRepair 

A 11.2 4.8 2.3 
∑

= 17 . 45 

B 11.15 4.8 4.09 
C 11.22 4.8 3.59 
D 11.2 4.8 5.3 ∑

44.77 19.2 15.28 

After detecting a critical asset, instead of triggering the group re- 
pair instantaneously as in Algorithm 2 lines 12--18 , it is possible 
to postpone the group repair up to the CBM time of the critical asset. 
However, this decision increases the failure probability of the system 

maintenance strategy. There is a race condition between MaintCBM 
and Fail activities to move the asset from OK to Maint or KO state, 
respectively. The later we trigger the maintenance action in a critical 
state, the higher the likelihood to miss the maintenance time, and ac- 
cordingly, asset and system failure probabilities increase. 

4.2.4. System maintenance planning sensitivity 
The effectiveness of the system maintenance planning depends on 

the criticality of assets. In turn, the criticality of assets depends on the 
DFT model, their position in the DFT model, and their failure param- 
eters. So as to examine the sensitivity of the proposed system mainte- 
nance algorithm we will analyse different DFT models with different re- 
dundancy and criticality levels. Let us assume that all the basic events of 
all the DFT models analysed in this subsection have the same specifica- 
tions: �� 0 = 1∕10 years −1 , �� 1 = 1∕6 years −1 , �� 2 = 1∕5 years −1 , t 0 = 0; t 1 = 8 
years, t 2 = 10 years, SF = 3 years. We use the same prediction instants and 
values for all the assets to analyse the sensitivity of Algorithm 2 for dif- 
ferent systems under the same conditions. We will relax this assumption 
in the case study analysed in Section 5 . 

Fig. 15 shows the system failure probability of the DFT in Fig. 13 us- 
ing asset and system maintenance strategies. Vertical dashed lines indi- 
cate prognostics prediction and failure probability update instants. We 
can see that the system failure probability is the same for both mainte- 
nance strategies. 

Table 3 displays the number of asset-level repair actions (#Repair), 
the total number of system-level group repair actions (#GroupRepair), 
and maintenance (#CBM) actions for asset and system maintenance 
strategies over 30 years. With system-level maintenance, the indepen- 
dent sum of asset repair actions is not the same as the total number of 
repair actions, because assets are repaired in clusters and these clusters 
change throughout the lifetime of the system. Therefore #GroupRepair 
denotes the total non-overlapping group repair actions performed in the 
system. 

The number of repair and maintenance actions are quantified using 
Monte Carlo simulations counting the number of times the maintenance 
activity MaintCBM and repair activities Repair and RCrit trigger 
in the models shown in Figs. 10 and Figs. 12 for asset and system main- 
tenance strategies respectively. Each Monte Carlo trial calculates an in- 

Fig. 16. Example Dynamic Fault Tree model. 

Fig. 17. System failure probability with different maintenance strategies for the DFT in 
Fig. 16 . 

Table 4 
Repair and maintenance actions in Fig. 17 . 

Asset Asset-level System-level 

# CBM # Repair # CBM # GroupRepair 

A 11.14 4.76 0.4 
∑

= 17 . 27 

B 11.32 4.88 0.37 
C 3.88 2.15 2.7 
D 11.28 4.69 1.54 
E 4.44 2.18 3.63 ∑

42.06 18.66 8.64 

teger number of actions, but after averaging with the total number of 
iterations, the final results become real values (see Eq. (8) ). 

We can see in Table 3 that the system maintenance strategy reduces 
preventive maintenance and reactive repair actions. For the asset main- 
tenance strategy the number of CBM and repair actions are the same for 
all the assets because we use the same failure, maintenance and repair 
parameters. For system maintenance strategies, the more critical the as- 
set, the more maintenance actions and vice-versa. In this case we can see 
in Table 3 that the most critical asset is D and the least is A . According 
to the DFT in Fig. 13 we can see that D is a single point of failure and 
A is the least critical because it requires time-dependent events, which 
are more restrictive than AND logic operations. 

If we add more redundancies to the system, we will reduce the criti- 
cality of assets and the number of CBM actions in the system-level main- 
tenance strategy. Let us consider the DFT model in Fig. 16 , with the same 
failure, maintenance, and repair rates as before. 

Fig. 17 confirms that the system failure probability decreases with 
respect to Fig. 15 . In addition, we can see that the failure probability of 
the system maintenance strategy is slightly higher than the asset-level 
configuration. 
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Fig. 18. Asset-level failure probability with different maintenance strategies for the DFT 
in Fig. 16 . 

The CBM or group repair is enabled after diagnosing a critical as- 
set. The criticality changes after failure, repair or maintenance actions. 
This means that, the more reliable the architecture, the less frequently 
there will be a criticality change in the system. Therefore, the repair and 
maintenance actions will be enabled less frequently and accordingly, the 
failure probability for the system maintenance strategy will be increased 
with respect to the asset maintenance strategy. 

Table 4 displays the number of triggered maintenance and repair 
actions in 30 years. We can see that maintenance and repair activities 
are reduced with respect to Table 3 for the system maintenance strategy. 
Since we use the same failure, repair and maintenance parameters as in 
Fig. 13 , the asset maintenance strategies show very similar values to 
those in Table 3 , with the exception of those for assets C and E . These 
assets are inputs of a spare gate (with activation priority of E over C) 
and therefore they can be in standby state, which reduces maintenance 
and repair actions (see Fig. 10 ). 

We can also observe in Table 4 that the most critical asset is E and 
the least critical asset is B . Fig. 18 shows the asset failure probabilities 
for assets B and E . 

Fig. 19. Transmission substation configuration. 

Table 5 
RUL values (in years) at prediction times T p . 

Assets Tr1 Tr2 Tr3 Tr4 CB1 CB2 CB3 CB4 

� � 0 10 10 10 10 2 2 2 2 
� � 1 4 5 7 7 1 1 1.5 1.5 
� � 2 3 4 5 5 0.5 0.5 0.8 0.8 

We can see in Fig. 18 that the more critical the asset, the less dif- 
ference there is between asset failure probabilities under each mainte- 
nance regime. Asset B is a non-critical asset and accordingly, the failure 
probability difference for different maintenance strategies is bigger. In 
the previous case shown in Fig. 13 , the asset level failure probabilities 
are similar for all the assets because their criticalities are similar too. 
The implemented system maintenance strategy reduces the asset-level 
differences at the system-level. 

5. Case study 

The correct operation of a transmission substation is critical for 
power grid performance. Fig. 19 shows a configuration example of a 
transmission substation comprised of circuit breakers (CB) and trans- 
formers (Transf.). 

The repair of the transformer is a very expensive and time consuming 
process [69] . Accordingly, the transmission substation is designed to be 
a fault tolerant system. In the configuration shown in Fig. 19 , there are 
always two active transformers and the other two are in standby mode. 
Any time an active transformer fails, a standby transformer is activated. 

We define the failure condition of the transmission substation in Fig. 
19 with DFT gates (see Section 3.4 ). Fig. 20 defines the DFT model of 
the transmission substation shown in Fig. 19 . 

The DFT model in Fig. 20 can be interpreted as follows. The system 

failure will occur either because: 

• Two transformers fail and two complementary circuit breakers have 
already failed (IE1-IE6). 

• One transformer fails and three complementary circuit breakers have 
already failed (IE7-IE10). 

• All transformers fail (spare gate). 

The spare gate determines the activation priority of the inputs from 

left to right order. That is, any time Tr 1 is available, its activation is 
preferred over the rest of transformers which are in standby state. 

Accordingly, we have used the Dynamic Fault Tree model in Fig. 
20 to evaluate the system and asset failure probabilities with prognostics 
predictions in Table 5 and �= 0.1 years; �= 0.1 years ( Fig. 3 ). 

Fig. 20. Dynamic Fault Tree model of the transmission substation in Fig. 19 . 
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Table 5 displays the RUL values assumed for transformers and circuit 
breakers. If available, it is possible to replace these values with realistic 
figures for circuit breakers [ 76,80 ] and transformers [24] . For simplic- 
ity we have adopted hypothetical reasonable values. We assume that at 
the initial prediction time instant (t = � � 0 

) the estimated RUL for all trans- 
formers is 10 years and 2 years for circuit breakers. Since Tr1 and Tr2 are 
the preferred transformers, they will age more rapidly than Tr3 and Tr4. 
The prediction times for transformers are � � 1 = 4 and � � 2 = 6 years. As 
for circuit breakers, the prediction times are � � 1 = 0 . 5 and � � 2 = 1 years. 
We have assumed that the safety factor for transformers is 1 year and 
0.1 year for circuit breakers. 

5.1. Implementing the SAN model 

Fig. 21 shows the SAN implementation of the transformer substation 
DFT model ( Fig. 20 ) with system-level maintenance. For transformers, 
the asset models in Figs. 10 and 12 are implemented for asset and system 

maintenance strategies, respectively. For circuit breakers the same mod- 
els are used without StandBy and Activate places, connecting the 
Repair and MaintDuration activities directly with the OK place. 

Firstly we initialize (i) the parameters of the atomic SAN models of 
each asset of the system with: failure rate, repair rate, maintenance rate, 
prediction times and corresponding RUL values ( �i , �i , � i , �i , � � � , RUL i ; 
∀����� � ∈ ������ ∶ 1 ≤ ����� � ≤ �); and (ii) the marking of its places to 
the initial state: 

• CB1, CB2, CB3, CB4: m( OK ) = 1, m( KO ) = 0, m( Maint ) = 0, 
m( WaitCritical ) = 0, m( CheckCritical ) = 0, m( Enable- 
SystemCBM ) = 0. 

• Tr1, Tr2: m( OK ) = 1, m( KO ) = 0, m( Standby ) = 0, m( Maint ) = 0, 
m( Activate ) = 0, m( WaitCritical ) = 0, m( CheckCriti- 
cal ) = 0, m( EnableSystemCBM ) = 0. 

• Tr3, Tr4: m( OK ) = 0, m( KO ) = 0, m( Standby ) = 1, m( Maint ) = 0, 
m( Activate ) = 0, m( WaitCritical ) = 0, m( CheckCriti- 
cal ) = 0, m( EnableSystemCBM ) = 0. 

For each asset, the Check output gate implements the update pro- 
cess to resample the failure and maintenance rates using prognostics 
prediction results through Lambda , Omega , React , SF , and Preds 
places as defined in Algorithm 1 . 

After defining the atomic SAN models for the assets, the system fail- 
ure logic is defined. The system failure modelling process follows the 
same process as defined in the synthesis example in Fig. 8 . The failure 
places of assets (denoted as KO places) are joined with the failure places 
of failure logic gates (denoted as A , B places in Fig. 7 ) to model the fail- 
ure logic of the system defined in Fig. 20 . Note that Fig. 21 only shows 
IE1 , IE10 and Spare _ Tr submodels in detail because IE2 - IE9 sub- 
models have the same failure logic. At the top-level model, all the places 
of all the assets are joined so as to create unique states for each asset 
and manage repeated events. 

In parallel, so as to implement reconfiguration events 
through the Activate places of the transformers, a 
Reconfigure _ Transformer model is created. The reconfiguration 
logic in Reconfigure _ Transformer implements the priority of 
the transformers. Any time a transformer fails, the transformer with the 
highest priority is activated. If a transformer with a higher priority is re- 
paired, it remains in the standby state until a lower priority transformer 
fails. Accordingly, the reconfiguration logic has been implemented 
in the SAN according to the priority of the transformers and possible 
failure and repair events [42] . Namely, when a standby transformer 
needs to be activated, the marking of the corresponding Activate 
place is set. Fig. 22 shows the Reconfigure _ Transformer model 
with reconfiguration sequence examples. 

At the top-level model, the operation ( OK ), failure ( KO ), Standby 
and Activate places of all transformers are joined with the 
Reconfigure _ Transformer logic to implement the reconfigura- 

Fig. 21. SAN model of the transmission substation. 

tion logic and change the marking of the transformers’ places to reflect 
reconfigurations and state changes. 

Fig. 23 shows the SystemManager SAN atomic model, where the 
SysManager input gate implements Algorithm 2 . 

Any time there is a change in the health state of any asset, the 
CheckCriticality place is set at the asset-level SAN atomic 
model so as to communicate with the SystemManager model. The 
SysManager input gate will take as input CheckCriticality , 
FailureTime and KO places of all the assets, and first it will eval- 
uate if the change of health state of the asset affects the criticality. 
Then depending on the situation defined in Algorithm 2 , it will acti- 
vate group repairs and condition-based maintenance actions through 
WaitCritical and EnableSystemCBM places, respectively. 
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Fig. 22. Reconfiguration process for the transformer. 

Fig. 23. System manager model. 

The SAN modelling process for the asset-level maintenance strategy 
is the same as in Fig. 21 without system manager dependencies. The 
asset models are replaced with manager-independent models as shown 
in Fig. 10 and the top-level model will not have the SystemManager 
model [33] . 

In both cases, failure, reconfiguration, repair, and maintenance 
events will impact directly on asset models and top-level system fail- 
ure logic. According to these events the assets will change their mark- 
ing (health status) and this will instantaneously impact on the system 

failure logic changing the marking of the logic gates. Finally, asset and 
system level failure probabilities are evaluated through reward variables 
as defined in Eq. (6) by monitoring the places of interest. Namely, asset- 
level failure probability is monitored through KO places and transmis- 
sion substation system failure is monitored through the Y place of the 
OR gate. 

Table 6 
Repair and maintenance actions for asset and system level maintenance strategies of the 
transmission substation in Fig. 20 . 

Asset Asset-level System-level 

# CBM # Repair # CBM # GroupRepair 

Tr1 0.85 0.72 0.36 Σ = 14 . 38 

Tr2 0.85 0.72 0.36 
Tr3 0.85 0.72 0.041 
Tr4 0.85 0.72 0.007 
CB1 16.38 12.98 0.0197 
CB2 16.33 12.98 0.0208 
CB3 10.58 9.26 0.024 
CB4 10.63 9.41 0.033 
Σ 57.32 47.51 0.5415 

Fig. 24. System-level failure probability of the transmission substation in Fig. 19 . 

Similarly, the number of condition-based maintenance actions, 
#CBM, are quantified using Eq. (8) by monitoring the asset-level 
MaintCBM activity. For asset-level maintenance strategies #Repair ac- 
tions are calculated through the Repair activity ( Fig. 10 ), whereas 
#GroupRepair actions are quantified by the system manager model ( Fig. 
23 ) counting the number of independent group repair actions. 

5.2. Results 

Table 6 shows the number of preventive maintenance and reactive 
repair actions for asset and system maintenance strategies. Focusing on 
asset-level results, we can see that the preventive maintenance actions 
are in proportion with the values in Table 5 , e.g. for CB1 with a RUL of 
0.5 years at � � 2 , it is expected that the maintenance will trigger around 
10 times (or more due to the safety factor). When the asset is not re- 
paired preventively, the asset will be repaired reactively. 

If we focus on system-level actions in Table 6 we can see that there 
is a significant reduction in the total number of triggered reactive repair 
and preventive maintenance actions. The total number of group repair 
actions are three times less than independent asset repair actions. The 
CBM actions are also reduced because this is only triggered when an 
asset is diagnosed as critical. 

Fig. 24 shows the effect of preventive maintenance and repair ac- 
tions on the system failure probability for both strategies. We can see 
that the asset maintenance strategy has a lower failure probability, at 
the cost of triggering more repair and maintenance events ( Table 6 ). 

Fig. 25 shows the asset failure probabilities for CB1 and Tr1 using 
system and asset maintenance strategies. We can see that the failure 
probability difference is greater for non-critical assets (CB1) than for 
critical assets (Tr1). This reflects the effectiveness of Algorithm 2 , imple- 
menting preventive maintenance for critical assets and reactive repair 
for non-critical assets. 
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Fig. 25. Asset-level failure probability of the transmission substation in Fig. 19 . 

6. Discussion 

Depending on the application specific requirements, the proposed 
algorithm permits the evaluation of whether it is cost-effective to trig- 
ger more maintenance and repair actions, or whether it is feasible to 
postpone them at the cost of slightly increased failure probability at 
the system level. In this paper the cost-effectiveness has been evaluated 
by considering the number of triggered maintenance and repair events 
for the different maintenance strategies. However, as part of our future 
work we will address a more complete cost-effectiveness analysis includ- 
ing asset costs, planned shutdown costs, downtime costs, maintenance 
costs and prediction costs (see Section 7 ). 

The SAN models presented in this paper impact directly on different 
dependability attributes. The failure probability estimations for different 
maintenance strategies shown in Figs. 24 and 25 impact not only on re- 
liability and maintenance planning, but also on safety. The dynamic de- 
pendability model quantifies the probability of occurrence of hazardous 
events, i.e. transmission substation failure in Fig. 20 . With the considera- 
tion of prognostics information, from the point of view of safety, a better 
picture of the system health is obtained which can help to improve the 
definition of safety margin values and avoid hazardous consequences 
through up-to-date operational information. Note also that the dynamic 
dependability model includes repair actions, and accordingly, assessing 
the probability of being in the working state would lead directly to the 
availability assessment. 

Note also that the failure, maintenance and repair rates can be mod- 
elled with any parametrized distribution functions. We have used the 
constant degradation as an example, but it is perfectly possible to use, 
e.g. Weibull or Gamma distributions, because the time to failure is 
drawn from the inverse sampling method ( Section 3.3 ). One possible 
extension may be to use generic distributions for those cases in which 
the outcome of the prognostics method is the PDF of the RUL ( Section 
7 ). 

7. Conclusions 

In this paper, we proposed a method for prognostics-enhanced main- 
tenance of complex dynamic systems which includes a new algorithm 

for cost effective grouping of assets. If the failure of an asset is not crit- 
ical, i.e. it does not cause system failure, we leave it to fail and we 
repair all non-critical assets together after diagnosing a critical asset. 
For critical assets, we have implemented condition-based maintenance 
strategies based on RUL estimations. We have used Stochastic Activity 
Networks (SAN) for the assessment of the proposed maintenance ap- 

proach. In SAN we have integrated Dynamic Fault Tree models with 
prognostics prediction results, criticality assessment, and alternative 
maintenance strategies in a rich model that can improve the accuracy of 
planning. 

The proposed grouping maintenance algorithm reduces preventive 
maintenance and reactive repair actions. The experiments presented 
verify the effectiveness of the algorithm. We have also confirmed that 
the structure of the dynamic dependability evaluation model plays a vi- 
tal role in the proposed system-level maintenance strategy. That is, the 
more reliable the system architecture, the less critical each asset will be, 
and accordingly preventive maintenance actions will be reduced and the 
system failure probability is increased. 

Future work can address the extension of the proposed framework 
for the: 

• cost-effectiveness analysis [33] ; 
• integration of generic distributions models, e.g. [54] ; 
• integration of other importance measures [59,77] ; 
• analysis of opportunistic maintenance with multi-criteria decision 
making [78] ; 

• evaluation of resource constrained and imperfect maintenance ac- 
tions [79] . 
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