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Abstract: This paper formulates the exact analytical 
probability density function (PDF) for the ratio of two 
independent dissolved gas analysis (DGA) measurements 
that include individual gas measurement errors. It is 
demonstrated that for small DGA gas measurement errors, 
the correct two-gas ratio PDF approaches a conventional 
Gaussian distribution. As the measurement accuracy 
decreases, the ratio PDF becomes non-Gaussian with the 
maximum likelihood value of the PDF deviating from the 
true underlying value. For larger errors, the maximum 
likelihood estimate of the gas ratio deviates significantly 
from presumed Gaussian statistics. A method for de-
biasing measured gas ratio values is presented and a simple 
application is used to demonstrate the proposed approach. 

I. INTRODUCTION

Transformers are key assets for the correct operation of the 
power grid [1], and accordingly, transformer health monitoring 
activities are crucial to ensure reliable grid operation [2]. 
Dissolved gas analysis (DGA) is an important industry-accepted 
method for assessing the health of the electrical insulation of oil-
filled power transformers [3]-[6]. DGA involves extracting oil 
samples and making measurements of key combustible gases 
including hydrogen (H2), methane (CH4), acetylene (C2H2), 
ethylene (C2H4), ethane (C2H6), carbon monoxide (CO) and 
carbon dioxide (CO2), measured in μlitres/litre or parts-per-million 
(ppm). Diagnostic health assessment is often performed through 
determining the levels of these gases and then evaluating a set of 
key gas ratios, labelled from R1 to R5, as defined in Table I. 

TABLE I 
KEY GAS RATIO DEFINITIONS 

Ratio R1 R2 R3 R4 R5 
Gases CH4/H2 C2H2/C2H4 C2H2/CH4 C2H6/C2H2 C2H4/C2H6 

The IEEE C57.104 and IEC 60599 standards outline methods 
for the measurement and analysis of key gas ratios such as 
Rogers ratios, Doernenburg ratios and the Duval triangle [7], 
[8]. These methods define boundary gas levels and gas-ratio 
threshold levels that correspond to insulation fault types. 

When measuring gas levels, hardware equipment and 
laboratory measurement procedures induce gas measurement 
errors. For an analytical detection limit S, the IEC 60599 states 
that above 10 x S the uncertainty on gas measurements is 15% 
and for measurements below 10 x S the uncertainty can 

increase up to 30% [8]. Duval and Dukarm highlight that gas 
measurement errors can range from 5% to 30%, and if 
measurement accuracies are unknown, they recommend the 
adoption of a default 15% measurement error [9]. Though 
many modern gas measurement instruments are capable of 
attaining 5% measurement errors or better, many other gas 
measurements still have large measurement uncertainties. 
Indeed, historical gas measurements collected by legacy 
measurement equipment will likely have larger or unknown 
measurement errors. It is therefore crucial to know how best to 
evaluate the accuracy of gas ratio measurements for these 
situations, and accordingly, interpret the outcome of any DGA 
diagnostic methods. 

In this context, a general understanding of the correct 
theoretical and analytical framework for determining a two-gas 
ratio error, based on individual gas measurement errors is 
required. Normally practitioners presume gas ratio values are 
Gaussian distributed around the true value (e.g. [10]). 
However, this is not the case as will be presented below. 

The statistical distributions of the ratio of two independent 
Gaussian distributed measurement variables has previously 
been studied [11-14]. However, these papers do not provide an 
analysis of best estimate methods for establishing the 
maximum likelihood (ML) ratio probability for applications 
such as DGA ratio-based diagnostics. To this end, the main 
contributions of this paper are twofold. Firstly, the formulation 
of the correct probability density function (PDF) for two-gas 
ratio dissolved gas evaluations with measurement errors. 
Secondly, the conception of a methodology to elicit the best 
estimate of the true underlying gas ratio through ML 
estimation methods. In the evaluations, it is shown that the 
correct PDF for a two-gas ratio determination is non-Gaussian. 
Both the correct gas ratio PDF and a presumed standard 
Gaussian formulated PDF are compared. A simple application 
to DGA data demonstrates the underlying principles in relation 
to best-estimate gas-ratio values. 

The paper structure is as follows. Section 2 derives the PDF 
for two measurement gas ratios with individual gas 
measurement uncertainties and compares the correct PDF with 
a Gaussian PDF formulation as a function of measurement 
errors. Section 3 outlines a method for determining the best 
estimate of the true underlying ratio based on the correct PDF 
and measured ratio value. Section 4 provides some examples to 
demonstrate the principles outlined in the paper. Finally, 
Section 5 summarizes the main conclusions. 

This is a peer reviewed, accepted author manuscript of the following research paper: Stewart, B. G., & Aizpurua, J. I. (2022). Uncertainty analysis of two gas 
measurement DGA ratios for improved diagnostics applications. 1-4. Paper presented at International Conference on High Voltage Engineering, Chongqing, 
China.

mailto:brian.stewart.100@strath.ac.uk


II. UNCERTAINTY OF DGA DIAGNOSTICS: DERIVATION OF 
GAS RATIO PROBABILITY DENSITY FUNCTIONS

 Let any measured gas ratio measurement be defined as R = x/y, 
where x and y are the numerator and denominator gas 
measurements respectively. Also, let R0 = x0/y0 represent the true 
underlying gas ratio, where x0 and y0 are the true gas levels with 
no measurement errors. If x and y are independent Gaussian 
(Normal) distributed variables, then the resulting individual PDFs 
are expressed as: 

(1) 

where z = {x, y}, is the gas measurement, z0 is the underlying true 
gas level and σz is the standard measurement error on z. 

A. Gas Ratio PDF with Measurement Errors
The PDF for the ratio R, PR(R, R0), is determined from the

following formulation: 

(2) 

which results in 

(3) 

Substituting the relevant terms from (1) and (2) into (3), then 

(4) 

Expanding terms and performing the integration results in: 

(5) 

Substituting R0 = x0/y0 and defining a = σx/x0 and b = σy/y0 as 
the fractional errors on x0 and y0, then (5) can be expressed as: 

. (6) 

It can be seen that PR(R, R0) is a function of R0, a and b. 
Equation (6) can be normalized in relation to R0 by defining a 
scaling factor α = R/R0. The corresponding PDF distribution of 
α, denoted Pα(α), is defined as follows: 

. (7) 

Formulating (7) leads to the resulting PDF for , i.e. 

 . (8) 

Equation (8) depends solely on a and b, and permits the 
evaluation of gas ratio probabilities for all values of R0 and all 
fractional errors on gas measurements through the scaling 
process. That is, the relationship R = αR0 permits scaling of all 
α values to R and R0 through Equation (8). 

Figure 2 shows some examples of the PDF Pα(α) for different 
measurement error values of a and b, and demonstrates that 
Pα(α) is generally non-Gaussian in nature. 

Figure 1. Example P() values as a function of for 
a = 15% and b = {5%; 10%; 15%; 20%; 25%; 30%}. 

B. Standard Gaussian Gas Ratio PDF
For simplicity, the usual practice when analyzing a gas ratio
measurement, R, is to adopt a Gaussian PDF [10]. For
comparison purposes, the PDF for a presumed Gaussian
distribution, PG(R,R0), is described by:

(9) 

where σG is determined through: 

 (10) 

which results in: 

(11) 

Substituting α = R/R0 and noting that dR/dα = R0, then (9) can 
be transformed into the following Gaussian form for variable α: 

(12) 

where . It can be seen in (12) that 
PαG(α) is independent of R0 and is an explicit function of a and 
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b. Scaling to R0 is again performed through R = αR0 noting that
PG(R,R0) = PαG(α|R)/R0.

C. Comparison of Pα(α) and PαG(α)
As examples, Figure 2 shows the differences in the PDFs

and the ML values between Pα(α) and PαG(α) for: (a) a=5%, 
b=15% and (b) a=10%, b=30%. Pα(α) is seen to be 
asymmetric compared to PαG(α,) and also possesses a wider 
PDF skirt. It is also noted that the ML α value, αML, of Pα(α) is 
always < 1, while for PG(α), which is symmetric, αML = 1. It is 
also noted that when b is small, or when both a and b are small, 
then Pα(α) tends towards the Gaussian form PαG(α). 

For diagnostics purposes the ML estimate of a PDF is often 
adopted as the most likely measured value. As a consequence, 
the measured value, R, requires to be “de-biased” to the best 
estimate of Ro based on the ML value from Pα(α) (see below). 

III. INFERENCE OF TRUE GAS RATIO R0

As the ML value of Pα(α) < 1, a bias correction process is 
required to estimate the true underlying value of R0, i.e. R0. 
The measured value R is always an underestimate of the best 
estimate of the true value R0, i.e. the underlying value of R0 
must be larger to ensure R is the peak (ML value) of the correct 
underlying PDF PR(R, R0). The correction process involves 
calculating αML using Pα(α) and then adjusting the measured 
value R by dividing it by αML to obtain the corrected or 
unbiased estimate R0. The method for inferring R0 is as 
follows. Using the values of a and b, determine analytically the 
ML value of α from Pα(α) through: 

(13) 

Differentiating (13) and solving for αML, results, after 
simplification, in the following quadratic equation:  

(14) 

where A4 = 2b6, A3 = b4(1+3a2), A2 = b2(a2b2+2a2-b2), A1 = 
a2(a2 + 3a2b2 - 2b2), and A0 = - a4(1+b2). 

Equation (14) may be solved through numerical iteration 
methods, e.g. Newton-Raphson iteration. However, there are 
some special cases. If b << a or b = 0, then (14) reduces to 
a4αML - a4 = 0 resulting in αML = 1. If a << b or a = 0, then 
(14) reduces to 2b2α2

ML + αML - 1 = 0. Solving directly and
taking the positive root gives .
Once αML has been evaluated and with the measured value 
R = x/y presumed to be the ML value of PR(R, R0), then the 
true underlying R0 (which is always greater than R) is 
determined though the relationship: 

(18) 

Example calculations of αML as a function of gas measurement 
errors a and b are shown in Figure 3. As can be seen, when 
errors increase, αML reduces. In addition, αML is more 
susceptible to variations in a when b is constant.  

(a) a = 5%, b=15%

(b) a = 1 0%, b = 30%
Figure 2. Example plots of Pα(α) and PG(α) 

IV. NUMERICAL EXAMPLE

Different gas ratio determinations exist for DGA-based power 
transformer diagnostics [7, 8]. To demonstrate the principles of 
the proposed ML correction method, this section focuses on the 
application of Rogers ratios that classify faults according to the 
ratio values shown in Table II. As an example, consider the 
following key gas measurements taken from a power 
transformer: CH4 = 156 ppm, H2 = 164 ppm, C2H2 = 15 ppm, 
C2H4 = 167 ppm and C2H6 = 58ppm. With the selected gas 
values, the corresponding ratio values are R1 = 0.9512, R2 = 
0.0898 and R5 = 2.8793. Assuming gas measurements without 
errors, the transformer health is classified as a low temperature 
thermal fault according to Table II. Assuming a Gaussian PDF, 
the ML estimates of the true underlying values R10, R20 and 
R50 are the measured values, i.e. G0 = R1, G0 = R2 and 

G0 = R5. For the correct PDF, PR(R, R0), the ML estimates, 
i.e. R0, R0 and R0, are obtained through solving (14), 
then applying (18). Corrected R0 value estimates as a function 
of a = b from 0 to 30% are shown in Figure 4. Depending on 
the gas errors, the diagnostic estimates cross over Rogers ratio 
boundaries, potentially changing the fault diagnosis outcome. 
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Figure 3. Example ML plots as a function of gas errors a and b 
TABLE II 

ROGERS RATIO FAULT DIAGNOSTICS [7], [8] 
Case R2 R1 R5 Fault Diagnosis 

0 < 0.1 0.1-1 < 1 Unit normal 
1 < 0.1 < 0.1 < 1 Low energy arcing - PD 
2 0.1-3 0.1-1 > 3 Arcing – high energy discharge 
3 < 0.1 0.1-1 1-3 Low temperature thermal 
4 < 0.1 > 1 1-3 Thermal < 700 0C 
5 < 0.1 > 1 > 3 Thermal > 700 0C 

Figure 4. Unbiased estimates of the true Rogers ratios R10, 
R20 and R50 as a function of gas measurement errors a = b 

For example, in Figure 4, R0 crosses the 1.0 boundary at 
16.3% error, R0 crosses the 0.1 boundary at 24.7% error. and 

R0 crosses the 3.0 boundary at 14.7% error. At larger errors, 
the fault appears to translate into a Thermal fault < 700 0C. 
Obviously, the closer the R value to the boundary the higher 
the likelihood of the underlying true value crossing the 
boundary level when individual gas measurement errors are 
large. 

V. CONCLUSIONS

This paper has presented the correct PDF for DGA two-gas 
ratios under measurement uncertainty. The analysis has shown 
that for accurate or low level gas measurement errors, the exact 
ratio PDF is very close to a Gaussian PDF. However, with less 
accurate gas measurements, the ratio PDF differs from a 
Gaussian distribution. The correct ratio PDF is a skewed 
distribution, where the measured or calculated ratio value is not 
representative of the best ML estimate of the true gas ratio 
value, as it would be for a Gaussian PDF. An analytical 
correction method was presented based on ML PDF criteria, 
permitting determination of the most-likely estimate of the true 
gas ratio value R0. It was also shown that individual gas 
measurement errors may influence potential gas ratio boundary 
decisions for diagnostic decision-making. 

Based on the non-Gaussian nature of the correct PDF, future 
work will present: (i) the construction and determination of 
precise confidence intervals for two-gas ratio errors, and (ii) 
the development of suitable analytical formulae for fault 
classification probabilities based on specified or defined two-
gas ratio fault-boundary levels.  
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