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ABSTRACT 

Condition monitoring of power trans-
formers is crucial for the reliable and 
cost-effective operation of the power 
grid. The unexpected failure of a trans-
former can lead to different consequenc-
es ranging from a lack of export capa-
bility, with the corresponding economic 

penalties, to catastrophic failure, with 
the associated health, safety, and eco-
nomic effects. With the advance of ma-
chine learning techniques, it is possible 
to enhance traditional transformer health 
monitoring techniques with data-driv-
en and expert-based prognostics and 
health management (PHM) applications. 
Accordingly, this paper reviews the ex-

perience of the authors in the implemen-
tation of machine learning methods for 
transformer condition monitoring.
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1. Introduction
The correct operation of a power trans-
former depends on the correct operation 
of multiple related components over a 
variety of conditions. When monitor-
ing the transformer’s health, the possi-
ble failure modes need to be examined. 
Traditional methods for transformer 
health assessment have been focused 
on the analysis of, e.g. gases dissolved in 
oil, temperature, or electrical parameters 
[1]. With the advance of machine learn-
ing (ML) techniques, traditional trans-
former health monitoring techniques 
can be enhanced with the development 
of prognostics and health management 
(PHM) applications, including anomaly 
detection, diagnostics, and prognostics 
analysis modules [2]. For a consistent 
implementation of ML methods for 
transformer health monitoring, a multi-
stage PHM-oriented methodology is 
needed. Fig.  1 shows the block diagram 

of the PHM-oriented design methodol-
ogy.

The PHM-oriented analytics process 
starts from the data audit step by listing 
available datasets and identifying new 
variables that can be monitored to im-
prove the health assessment process. Next, 
correlation and anomaly detection are 
implemented to identify abnormal data 
patterns. If an anomalous data trend is 
detected, then the diagnostics follows the 
process for the identification of failures. 
After diagnosing the current health, it is 
possible to implement prognostics meth-
ods to estimate the remaining useful life 
(RUL) through the application of future 
operation profiles. Fig. 2 shows prognos-
tics and RUL prediction concepts based 
on a set of collected health-state data 
samples, {y1,…,yn}, with predictions from 
the prediction time instant tp until cross-
ing the failure threshold and reaching the 

Prognostics and 
health management 
oriented data 
analytics suite for 
transformer health 
monitoring
An overview of machine learning 
based prognostics and health 
management applications

Figure 1. PHM-oriented analytic modules
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end-of-life (EOL) limit. Note that the ini-
tial and final health states are expressed 
through probability density functions 
(PDF), which define the uncertainty asso-
ciated with these states.

Fig.  3 shows the implementation of the 
PHM-oriented methodology for trans-
former health monitoring integrating 
different data sources, the correlation 
between different parameters, diagnos-
tics techniques, evidence combination of 
the analytic results, health index estima-
tion and the final prognostics prediction. 
The PHM analytics suite defines differ-
ent analytic layers from low-level data 
sources to high-level implementation 
levels, including diagnostics, prognos-
tics, and health index applications.

From the high-level transformer oper-
ation point of view, there are two types 
of data: operational and environmental 
data, e.g., ambient temperature, load, 
and transformer condition-related data. 
Transformer condition-related data 
can be further divided into off-line and 
on-line parameters, which may require 
different analytics. Off-line parameter 
extraction requires the transformer to be 
de-energized, whereas data is sampled on 
an ongoing basis for on-line parameters. 
The listed data sources in Fig. 3 are rele-
vant for transformer health monitoring. 
However, some of these datasets may not 
be easily collected, such as transform-
er hottest-spot temperature (HST), and 
sampled variables may depend on the 
type of transformer. Anomaly detection, 

diagnostics, and prognostics modules 
highlighted in Fig. 3 will be addressed in 
the following sections.

2. Anomaly detection

Anomaly detection focuses on the iden-
tification of abnormal patterns. Patterns 
or signatures define the correct opera-
tion, and they can be defined through 
ML and statistical learning models that 
learn to express the normal behaviour of 
the asset under study.

Many anomaly detection modules 
define the expected normality solely 
based on internal condition-related 
data. However, it is important to note 
that some systems are also influenced 
by external factors, such as ambient 
temperature and load. In this context, 
one alternative is to implement a condi-
tional anomaly detection (CAD) model 
which correlates the internal transform-
er condition-related data and external 
operational data [5].

Fig.  4a shows the transformer CAD 
model concept. The goal of the CAD 
module is to distinguish situations 
where unusual operation conditions 
may be causing abnormal transformer 
behaviour from situations where the 
transformer condition is unusual un-
der normal operation. The latter case 
is more likely to represent a true trans-
former health deterioration.

In order to implement the CAD model, 
Gaussian Mixture Models are used, which 

Figure 3. PHM-oriented data analytic suite – adapted from [4]

Figure 2. Prognostics prediction and RUL estimation [3]
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generate multivariate Gaussian distribu-
tions that embed condition-related data 
within a transformer model, P(Transf), 
and operating environment-related data 
within an environment model, P(Env). 
The set of Gaussian components and 
their mixing proportions constitute a 
probabilistic model of the dataset. Then 
a correlation algorithm, named Expec-
tation Maximization (EM) [5], is used to 
generate a conditional probability mod-
el that correlates the environment and 
transformer models, P(Transf | Env). 
EM converges towards a locally optimal 
set of values that maximize the likeli-
hood of the model P(Transf | Env). 

The CAD module can take multiple 
different input variables to the trans-
former and environment models. As an 
illustrative example, load and ambient 
temperature have been used in the en-
vironmental model and methane (CH4) 
and hydrogen (H2) for the transformer 
model. The development of the CAD 
model requires training environment 
and transformer models and then gener-
ating a correlation model. Both models 
have been trained based on normal op-
eration data, which is determined by a 

Conditional anomaly detection models can 
identify early indicators of anomalies, in-
cluding both contextual information and 
health-state of the transformer

period of stable gas levels, and the rest of 
the data is used for testing. Fig. 4b shows 
the trained environment model, where 
the axes in the horizontal plane denote 
normalized training values of true pow-
er and temperature, and the vertical axis 
identifies their joint probability density, 
e.g., when the true power is very high, it 
is likely that the temperature will be low. 
Fig.  4c shows the trained transformer 
model where horizontal plane axes de-
note methane and hydrogen, and the 
vertical axis denotes the probability den-
sity, e.g., it is very likely that when hydro-
gen is small, methane is also small. These 
figures model the expected independent 
normal behaviour of the transformer 
and environment.

After learning the environment and 
transformer models, the correlation 
models are tested. Fig. 5a shows the nor-

malized test data, and Fig. 5b shows the 
CAD outcome, where the red horizontal 
line identifies the failure threshold, and 
the vertical dashed line indicates the di-
vision between training and testing data.

In Fig.  5b, it can be observed that al-
most all the test data is classified as 
anomalous because the environment 
probability is high (triangles above the 
red line: normal environment), but the 
probability of the transformer mod-
el is low (squares below the red line), 
which indicates a true anomaly (circles 
below the red line). Note also that the 
last sample is classified as healthy (cir-
cle in the top right) because both trans-
former and environment models match 
with the trained models (Fig.  4b and 
Fig. 4c). In this case, as the gassing be-
haviour was being carefully monitored, 
the gas levels from the test period were 

Figure 4. (a) Transformer conditional anomaly detection approach. Examples of probabilistic; (b) transformer model, P(Transf), and (c) 
environment model, P(Env)

www.transformers-magaz ine .com   69         



samples, DGA={xi,yi}i=1, where the pair 
{xi,yi} contains the data related to the 
i-th observation, xi  X and yi  Y. The 
matrix  xi  Rnxp contains the informa-
tion  X={x1,…,xn} for p fault gases, and 
the vector Y  Rnx1 contains information 
about the health state of the transform-
er. In a binary classification problem, 
the set of possible states of yi are limited 
to normal and fault states. In contrast, 
multiclass classification problems are 
more challenging than binary classifi-
cation problems, but they also generate 
more useful information for mainte-
nance planning.

In this section, black-box (BB) and white 
box (WB) source classifiers are presented 
for multiclass transformer diagnostics, 
including normal degradation, thermal 
fault, arcing fault, and partial discharge 
(PD), based on the publicly available 
IEC TC 10 dataset that includes DGA 
samples and the corresponding forensic 

ing and insulation purposes. Dissolved 
Gas Analysis (DGA) is a mature and 
industry-standard method that focus-
es on the study of these gases [6]. There 
are different industry-accepted DGA 
interpretation methods, including Rog-
er’s ratios, Doernenburg’s ratios, Duval’s 
triangle and pentagon, and many more 
[7]. These techniques classify transform-
er faults based on the predefined range 
of specific fault gas ratios. However, their 
accuracy is limited because they assume 
crisp, deterministic decision bounds [7]. 
This leads to decreased diagnostics ac-
curacy and conflicting diagnostics out-
comes among methods, which can be 
confusing and do not help engineers in 
the decision-making process. 

In order to improve classification ac-
curacy, a number of ML models have 
been proposed focused on solving a 
supervised learning problem. That is, 
using a DGA dataset comprised of n 

known to be significantly different from 
those during the training period. These 
changes were caused by a scheduled 
change in the operation of the cooling 
of the transformer. Therefore, this case 
shows the power of the CAD technique 
to recognize changing operation condi-
tions, such as the change in cooling and 
the existence of any anomalous gas be-
haviour.

3. Diagnostics

The overall health of the transformer 
can be evaluated by looking at differ-
ent parameters such as electrical, gas, 
thermal, or mechanical characteristics. 
Particularly, the analysis of the gassing 
behaviour is an important indicator of 
an early malfunction of the transformer. 

Operational and fault events generate 
gases which are dissolved in the oil that 
circulates through a transformer for cool-

Figure 5. (a) CAD training and testing datasets; (b) CAD results

(a)

(b)
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transformer health-state information 
[8]. BB models generally show a high 
accuracy, but their usability for resolv-
ing misclassified data samples is limited 
because their diagnostics is determinis-
tic, and they do not generate uncertain 
information. WB models capture ex-
pert-knowledge either as a causal model 
or through first-principle models. They 
generate the uncertainty associated with 
the decision-making process by quanti-
fying the PDF of the likelihood of differ-
ent diagnostics states. Artificial Neural 
Networks (ANN) and Support Vector 
Machines (SVM) models are used as BB 
classification models, as they have shown 
high accuracy on DGA data [7]. For WB 
modelling Gaussian Bayesian networks 
(GBNs) are used because they are able to 
capture the causality among random vari-
ables and infer uncertainty information.

3.1. Artificial neural networks

ANNs are BB models are widely used 
for classification and regression [7]. 
The multilayer perceptron (MLP) feed-
forward model was used, which is a 
three-layer network (input, hidden, and 
output) comprised of fully connect-
ed neurons. Each neuron performs a 
weighted sum of its inputs and passes the 
results through an activation function. 
All the designed ANN models use a sig-
moid activation function for hidden and 
output nodes.

Model training is performed using a 
back-propagation algorithm. The goal is 
to learn the neuron weights to estimate 
the transformer health-state (network 
output) from DGA values (sample in-
put), which minimizes the estimation er-
ror with respect to the target transformer 
health state. The best results were ob-
tained with 20 hidden nodes with C2H6, 
C2H4, H2, CH4, and C2H2 as inputs, as 
shown in Fig. 6.

3.2. Support vector machines

The SVM maps input data into a space 
using a kernel function [7]. The SVM 
learns the boundary separating one 
transformer health state from anoth-
er with maximum distance. The kernel 
function aims to translate a problem that 
is nonlinearly separable into a feature 
space, which is linearly separable by a hy-
perplane. The hyperplane represents the 
transformer health-state classification Figure 7. GBN configuration for DGA diagnostics [9]

Figure 6. ANN configuration for DGA diagnostics [7]

boundary. The SVM training consists of 
calculating the kernel hyper-parameters 
and a cost variable, which is a trade-off 
between separation variables and ob-
taining a large margin for the SVM. Grid 
search was used to find the optimal pa-
rameters. A number of configurations 
were trained using all different gases and 
their ratios as input to the SVM. Of the 
trained SVMs, the one with the highest 
accuracy from the test data was select-
ed as the choice for that output, which 
matches with the input data used for the 
ANN model: C2H6, C2H4, H2, CH4 and 
C2H2.

3.3. Gaussian Bayesian networks

Bayesian networks (BN) are statistical 
models that capture probabilistic de-
pendencies among random variables 
[9]. Graphically, these variables are rep-
resented through nodes linked through 
edges that reflect dependencies between 
variables. Statistically, dependencies are 
quantified through conditional proba-
bilities. BNs are a compact representa-
tion of joint probability distributions. 
In probability theory, the chain rule 
permits the calculation of any mem-
ber of the joint distribution of a set of 
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come of GBN models is more useful. 
For instance, consider that after train-
ing the source classifiers, they are test-
ed for the following absolute gas values  
[7, 8]: H2 = 26788 ppm, C2H4 = 27 ppm,  
C2H6 = 2111 ppm, C2H2 = 1 ppm and 
CH4 = 18342 ppm and the observed fault 
type is partial discharge. Table I displays 
probabilistic results for the different 
classifiers and for the different possible 
health states of the transformer.

ANN and SVM models do not generate 
more information other than shown in 
Table I. However, GBN models gener-
ate PDFs with uncertain information, 
as shown in Fig. 9. If the designed GBN 
model is confident about the diagnos-
tics output, it will generate a PDF with a 
narrow standard deviation, i.e., PD fault. 
In contrast, for uncertain diagnostics 
outcomes, the generated PDFs are wider 
with greater standard deviation values, 
e.g., normal degradation.

So long as the test data is comprised of 
gas samples and faults, which are learned 
during the training stage, the GBN 
model should return a prediction with 
high confidence. However, if the model 
is tested on an unseen class of fault, the 
model should be able to quantify this 
with uncertainty levels which can con-
vey information about the confidence of 

Health-state diagnostics can be enhanced 
through machine learning methods, how-
ever, it is crucial to analyze and incorporate 
uncertainty information for conflictive deci-
sion-making scenarios

applied to the DGA dataset, for each of 
the analyzed faults, the outcome of the 
inference is a set of random samples 
from the conditional distribution of the 
fault node given the evidence. Density 
values of the inference outcomes can be 
calculated through Kernel density esti-
mates.

3.4. Performance results

After training and testing all the classifi-
ers through Monte-Carlo cross-valida-
tion, thus enabling statistical classifier 
evaluations, Fig. 8 shows the overall clas-
sification accuracy results for the differ-
ent source classifiers.

It can be seen that the ANN model is 
the more accurate diagnostics meth-
od [7]. It is interesting to observe that 
the accuracy of the GBN model is not 
as high as SVM and ANN models, but 
the information inferred from the out-

random variables using conditional 
probabilities. When a BN is comprised 
of continuous random variables, Gauss-
ian BNs capture dependencies through 
linear Gaussian distributions and vari-
able distributions are modelled through 
Normal random variables. Fig. 7 shows 
the GBN model.

The parameter estimation for GBN mod-
els is based on the maximum likelihood 
algorithm, which estimates the corre-
sponding parameters for each node in the 
BN model, e.g. for the PD node (Fig. 7):  
Pr(PD|C 2H 6,C 2H 2,CH 4,C 2H 4,H 2)~ 
N ( β 0 + β 1C 2H 6+ β 2C 2H 2+ β 3 C H 4+ 
β4C2H4+β5H2; σ2). After learning the 
parameters, the estimation of the con-
ditional probability of nodes is based on 
inferences. In this case, the likelihood 
weighting algorithm is implemented, 
which fixes the test DGA gas samples 
(evidence) and uses the likelihood of the 
evidence to weight samples [10]. When 

Figure 8. DGA diagnostics results tested on the IEC TC 10 dataset
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the diagnosis of the model. This uncer-
tainty information can be used to further 
post-process the results and improve the 
diagnostics accuracy [7].

4. Prognostics

Transformer insulating paper is subject-
ed to high temperatures and undergoes 
a polymerization process causing the 
breakdown of the cellulose fibres. When 
the fibre size is reduced, the kraft paper 
losses its mechanical strength. By be-
coming brittle, the paper breaks due to 
vibration during transformer operation 
resulting in the failure of electrical in-
sulation. Therefore, high temperatures 
reduce transformer insulation life, and it 
is essential to monitor the temperature. 
Accordingly, the focus of this section is 
on the quantification of the transformer 
paper aging rate and prediction of pa-
rameters to calculate the aging rate and 
remaining paper life.

The IEEE standard C57.91 defines the 
insulation paper aging acceleration  
factor at time t, FAA(t), as [10]:

 

(3)

where θH(t) is the transformer winding’s 
hottest-spot temperature at time instant 
t in °C, which can be calculated from 
other measurements through [10]:

 
(4)

where θTO(t) is the top oil (TO) tempera-
ture at time instant t and ∆θTO,H(t) is the 
hottest-spot temperature rise over top oil 
temperature at time instant t.

4.1. Hottest-spot temperature 
prediction

The hottest-spot temperature in (4) is 
inferred from other measurements, and 
these measurements may include mea-
surement errors that may affect the hot-

test-spot temperature estimation accura-
cy. Assuming steady-state measurements 
and including measurement errors, the 
hottest-spot temperature can be calcu-
lated as follows [10]:

 

(5)

 
where i(t) is the transformer load at 
time t, iR is the rated load, ∆θH,R is the 
hottest-spot temperature rise at rated 
load, m is a transformer parameter de-
termined from a lookup table depending 
on the cooling system of the transformer,  
φTO denotes the top oil measurement er-
ror and φi designates the load measure-
ment error.

Underestimated HST may lead to the 
pumps and fans running less, and the 
transformer will be running hotter with 
an accelerated aging rate and significantly 
reduced lifetime. If HST measurements 
are available, it is possible to directly build 
HST forecasting models based on ML 
models. However, it is often the case that 
HST measurements are expensive and 
not available. In this case, the hottest-spot 
temperature may be inferred from indi-
rect measurements, such as top-oil tem-
perature, ambient temperature, and load, 
as defined in (5). Given an input load 
profile and other influencing parameters, 
it is possible to design a top-oil tempera-
ture forecasting model through ML tech-
niques, which can then be used to predict 
the HST [3, 11].

Table 1. Classification accuracy results example [9]

Method Pr(Normal) Pr(Thermal) Pr(Arc) Pr(PD)

GBN 0.23 0.28 0.18 0.31

SVM 0.08 0.45 0.07 0.4

ANN 3.9E-2 0.5 4.8E-6 0.46

Figure 9. GBN output example [9]
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The forecasting horizon will determine the 
application, e.g., short-term forecasting 
may be used for online health monitoring, 
mid-term forecasting for maintenance 
planning and long-term for strategic de-
sign decisions. For a given prediction 
horizon, the first step when designing a 
forecasting model is to select and evaluate 
features that minimize the forecasting er-
ror. Depending on the forecasting model, 
delayed signals may be considered, and 
this may impact on the forecasting error 
due to the feedback configuration. There 

are different ML and statistical methods 
that can be used to forecast the top-oil 
temperature, e.g. [3, 11].

4.2. Prognostics through  
state-estimation

The degradation process of the insula-
tion paper is not a deterministic process, 
and it needs to integrate sources of un-
certainty corresponding to the degrada-
tion process, which can be represented 
through [3, 11]:

where ωt denotes the degradation pro-
cess uncertainty due to the lack of exact 
knowledge at time instant t,  ωRULt-∆t de-
notes the uncertainty of the lifetime es-
timation at time instant t-∆t, and θH(t) 
is the HST estimate. Initially ωRULt-∆t

 will 
denote the initial lifetime estimation  
error,  ωRUL0

. This error will be propagat-
ed and updated in subsequent iterations 
through the recurrence relation form of 
the RUL estimation in (4).

Using the designed hottest-spot tem-
perature forecasting model, it is possi-
ble to connect predictions with the RUL 
model in (6) and predict future RUL age-
ing profiles. Fig. 10 shows the potential 
integration in the transformer lifetime 
prediction framework.

For different examples in the implemen-
tation of transformer RUL prediction 
frameworks, including temperature 
forecasting strategies, the reader is re-
ferred to [3] and [11].

5. Conclusion

This paper has presented a number of 
machine-learning methods and tools for 
transformer condition monitoring via 
prognostics and health management ap-
plications. Namely, the implementation 
details for the development of anomaly 
detection, diagnostics and prognostics 
applications have been described. Most 
of the presented techniques combine 
data-driven machine-learning methods 
with expert knowledge-based strategies 
with a special emphasis on uncertainty 
processing for improved performance in 
operation contexts with various sourc-
es of uncertainty. This overview paper 
along with the data analytics suite will 
assist engineers in formulating, develop-
ing, understanding and identifying po-
tential applications for machine-learn-
ing informed prognostics and health 

Figure 10. Lifetime estimation framework

(6)

Prognostics predictions support mainte-
nance-related decision-making by predict-
ing future degradation trajectories, and they 
include physics-of-degradation information 
along with data-driven machine learning 
solutions
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management applications for power 
transformers.
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