5 research outputs found

    Two types of interneurons in the mouse lateral geniculate nucleus are characterized by different h-current density

    Get PDF
    Although hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels and the corresponding h-current (I(h)) have been shown to fundamentally shape the activity pattern in the thalamocortical network, little is known about their function in local circuit GABAergic interneurons (IN) of the dorsal part of the lateral geniculate nucleus (dLGN). By combining electrophysiological, molecular biological, immunohistochemical and cluster analysis, we characterized the properties of I(h) and the expression profile of HCN channels in IN. Passive and active electrophysiological properties of IN differed. Two subclasses of IN were resolved by unsupervised cluster analysis. Small cells were characterized by depolarized resting membrane potentials (RMP), stronger anomalous rectification, higher firing frequency of faster action potentials (APs), appearance of rebound bursting, and higher I(h) current density compared to the large IN. The depolarization exerted by sustained HCN channel activity facilitated neuronal firing. In addition to cyclic nucleotides, I(h) in IN was modulated by PIP(2) probably based on the abundant expression of the HCN3 isoform. Furthermore, only IN with larger cell diameters expressed neuronal nitric oxide synthase (nNOS). It is discussed that I(h) in IN is modulated by neurotransmitters present in the thalamus and that the specific properties of I(h) in these cells closely reflect their modulatory options

    Life-threatening massive pulmonary embolism rescued by venoarterial-extracorporeal membrane oxygenation

    No full text
    Abstract Background Despite quick implementation of reperfusion therapies, a few patients with high-risk, acute, massive, pulmonary embolism (PE) remain highly hemodynamically unstable. Others have absolute contraindication to receive reperfusion therapies. Venoarterial-extracorporeal membrane oxygenation (VA-ECMO) might lower their right ventricular overload, improve hemodynamic status, and restore tissue oxygenation. Methods ECMO-related complications and 90-day mortality were analyzed for 17 highly unstable, ECMO-treated, massive PE patients admitted to a tertiary-care center (2006–2015). Hospital- discharge survivors were assessed for long-term health-related quality of life. A systematic review of this topic was also conducted. Results Seventeen high-risk PE patients [median age 51 (range 18–70) years, Simplified Acute Physiology Score II (SAPS II) 78 (45–95)] were placed on VA-ECMO for 4 (1–12) days. Among 15 (82%) patients with pre-ECMO cardiac arrest, seven (41%) were cannulated during cardiopulmonary resuscitation, and eight (47%) underwent pre-ECMO thrombolysis. Pre-ECMO median blood pressure, pH, and blood lactate were, respectively: 42 (0–106) mmHg, 6.99 (6.54–7.37) and 13 (4–19) mmol/L. Ninety-day survival was 47%. Fifteen (88%) patients suffered in-ICU severe hemorrhages with no impact on survival. Like other ECMO-treated patients, ours reported limitations of all physical domains but preserved mental health 19 (4–69) months post-ICU discharge. Conclusions VA-ECMO could be a lifesaving rescue therapy for patients with high-risk, acute, massive PE when thrombolytic therapy fails or the patient is too sick to benefit from surgical thrombectomy. Because heparin-induced clot dissolution and spontaneous fibrinolysis allows ECMO weaning within several days, future studies should investigate whether VA-ECMO should be the sole therapy or completed by additional mechanical clot-removal therapies in this setting

    A Bayesian reanalysis of the Standard versus Accelerated Initiation of Renal-Replacement Therapy in Acute Kidney Injury (STARRT-AKI) trial

    No full text
    Background Timing of initiation of kidney-replacement therapy (KRT) in critically ill patients remains controversial. The Standard versus Accelerated Initiation of Renal-Replacement Therapy in Acute Kidney Injury (STARRT-AKI) trial compared two strategies of KRT initiation (accelerated versus standard) in critically ill patients with acute kidney injury and found neutral results for 90-day all-cause mortality. Probabilistic exploration of the trial endpoints may enable greater understanding of the trial findings. We aimed to perform a reanalysis using a Bayesian framework. Methods We performed a secondary analysis of all 2927 patients randomized in multi-national STARRT-AKI trial, performed at 168 centers in 15 countries. The primary endpoint, 90-day all-cause mortality, was evaluated using hierarchical Bayesian logistic regression. A spectrum of priors includes optimistic, neutral, and pessimistic priors, along with priors informed from earlier clinical trials. Secondary endpoints (KRT-free days and hospital-free days) were assessed using zero–one inflated beta regression. Results The posterior probability of benefit comparing an accelerated versus a standard KRT initiation strategy for the primary endpoint suggested no important difference, regardless of the prior used (absolute difference of 0.13% [95% credible interval [CrI] − 3.30%; 3.40%], − 0.39% [95% CrI − 3.46%; 3.00%], and 0.64% [95% CrI − 2.53%; 3.88%] for neutral, optimistic, and pessimistic priors, respectively). There was a very low probability that the effect size was equal or larger than a consensus-defined minimal clinically important difference. Patients allocated to the accelerated strategy had a lower number of KRT-free days (median absolute difference of − 3.55 days [95% CrI − 6.38; − 0.48]), with a probability that the accelerated strategy was associated with more KRT-free days of 0.008. Hospital-free days were similar between strategies, with the accelerated strategy having a median absolute difference of 0.48 more hospital-free days (95% CrI − 1.87; 2.72) compared with the standard strategy and the probability that the accelerated strategy had more hospital-free days was 0.66. Conclusions In a Bayesian reanalysis of the STARRT-AKI trial, we found very low probability that an accelerated strategy has clinically important benefits compared with the standard strategy. Patients receiving the accelerated strategy probably have fewer days alive and KRT-free. These findings do not support the adoption of an accelerated strategy of KRT initiation

    Regional Practice Variation and Outcomes in the Standard Versus Accelerated Initiation of Renal Replacement Therapy in Acute Kidney Injury (STARRT-AKI) Trial: A Post Hoc Secondary Analysis.

    No full text
    ObjectivesAmong patients with severe acute kidney injury (AKI) admitted to the ICU in high-income countries, regional practice variations for fluid balance (FB) management, timing, and choice of renal replacement therapy (RRT) modality may be significant.DesignSecondary post hoc analysis of the STandard vs. Accelerated initiation of Renal Replacement Therapy in Acute Kidney Injury (STARRT-AKI) trial (ClinicalTrials.gov number NCT02568722).SettingOne hundred-fifty-three ICUs in 13 countries.PatientsAltogether 2693 critically ill patients with AKI, of whom 994 were North American, 1143 European, and 556 from Australia and New Zealand (ANZ).InterventionsNone.Measurements and main resultsTotal mean FB to a maximum of 14 days was +7199 mL in North America, +5641 mL in Europe, and +2211 mL in ANZ (p p p p p p p p = 0.007).ConclusionsAmong STARRT-AKI trial centers, significant regional practice variation exists regarding FB, timing of initiation of RRT, and initial use of continuous RRT. After adjustment, such practice variation was associated with lower ICU and hospital stay and 90-day mortality among ANZ patients compared with other regions
    corecore