2,012 research outputs found
Cohort Profile: The Mater-University of Queensland Study of Pregnancy (MUSP)
How did the study come about? At the initiative of three hospital-based obstetricians one of the authors (JMN) and another sociologist attended a 1978 meeting to explore the potential for collaborative research. No specific project was proposed by the obstetricians. Two of the obstetricians had been trained in Scotland; one in Aberdeen where he had had some familiarity with the work of obstetrician Dugald Baird and sociologist Raymond Illsely. The obstetricians argued for an agenda which was clinically oriented. The two sociologists were more focussed on understanding how some social constructs (e.g. social class) might be relevant to explaining health outcomes. The initial year of the study was characterised by frequent (at least weekly) meetings at which the aims and substance of the proposed study were debated vigorously. As an initial decision the team focused on factors associated with adverse pregnancy outcomes. The first major project was to be a 3-5 year longitudinal study of pregnant women which would include a 6-month child post-natal follow-up as the main outcome of interest
PRIMUS: An observationally motivated model to connect the evolution of the AGN and galaxy populations out to z~1
We present an observationally motivated model to connect the AGN and galaxy
populations at 0.2<z<1.0 and predict the AGN X-ray luminosity function (XLF).
We start with measurements of the stellar mass function of galaxies (from the
Prism Multi-object Survey) and populate galaxies with AGNs using models for the
probability of a galaxy hosting an AGN as a function of specific accretion
rate. Our model is based on measurements indicating that the specific accretion
rate distribution is a universal function across a wide range of host stellar
mass with slope gamma_1 = -0.65 and an overall normalization that evolves with
redshift. We test several simple assumptions to extend this model to high
specific accretion rates (beyond the measurements) and compare the predictions
for the XLF with the observed data. We find good agreement with a model that
allows for a break in the specific accretion rate distribution at a point
corresponding to the Eddington limit, a steep power-law tail to super-Eddington
ratios with slope gamma_2 = -2.1 +0.3 -0.5, and a scatter of 0.38 dex in the
scaling between black hole and host stellar mass. Our results show that samples
of low luminosity AGNs are dominated by moderately massive galaxies (M* ~
10^{10-11} M_sun) growing with a wide range of accretion rates due to the shape
of the galaxy stellar mass function rather than a preference for AGN activity
at a particular stellar mass. Luminous AGNs may be a severely skewed population
with elevated black hole masses relative to their host galaxies and in rare
phases of rapid accretion.Comment: 11 pages, 5 figures, emulateapj format, updated to match version
accepted for publication in Ap
The X-ray luminosity function of Active Galactic Nuclei in the redshift interval z=3-5
We combine deep X-ray survey data from the Chandra observatory and the
wide-area/shallow XMM-XXL field to estimate the AGN X-ray luminosity function
in the redshift range z=3-5. The sample consists of nearly 340 sources with
either photometric (212) or spectroscopic (128) redshift in the above range.
The combination of deep and shallow survey fields provides a luminosity
baseline of three orders of magnitude, Lx(2-10keV)~1e43-1e46erg/s at z>3. We
follow a Bayesian approach to determine the binned AGN space density and
explore their evolution in a model-independent way. Our methodology accounts
for Poisson errors in the determination of X-ray fluxes and uncertainties in
photometric redshift estimates. We demonstrate that the latter is essential for
unbiased measurement of space densities. We find that the AGN X-ray luminosity
function evolves strongly between the redshift intervals z=3-4 and z=4-5. There
is also suggestive evidence that the amplitude of this evolution is luminosity
dependent. The space density of AGN with Lx<1e45erg/s drops by a factor of 5
between the redshift intervals above, while the evolution of brighter AGN
appears to be milder. Comparison of our X-ray luminosity function with that of
UV/optical selected QSOs at similar redshifts shows broad agreement at bright
luminosities, Lx>1e45erg/s. The faint-end slope of UV/optical luminosity
functions however, is steeper than for X-ray selected AGN. This implies that
the type-I AGN fraction increases with decreasing luminosity at z>3, opposite
to trends established at lower redshift. We also assess the significance of AGN
in keeping the hydrogen ionised at high redshift. Our X-ray luminosity function
yields ionising photon rate densities that are insufficient to keep the
Universe ionised at redshift z>4. A source of uncertainty in this calculation
is the escape fraction of UV photons for X-ray selected AGN.Comment: MNRAS accepte
Concentration Dependence of Superconductivity and Order-Disorder Transition in the Hexagonal Rubidium Tungsten Bronze RbxWO3. Interfacial and bulk properties
We revisited the problem of the stability of the superconducting state in
RbxWO3 and identified the main causes of the contradictory data previously
published. We have shown that the ordering of the Rb vacancies in the
nonstoichiometric compounds have a major detrimental effect on the
superconducting temperature Tc.The order-disorder transition is first order
only near x = 0.25, where it cannot be quenched effectively and Tc is reduced
below 1K. We found that the high Tc's which were sometimes deduced from
resistivity measurements, and attributed to compounds with .25 < x < .30, are
to be ascribed to interfacial superconductivity which generates spectacular
non-linear effects. We also clarified the effect of acid etching and set more
precisely the low-rubidium-content boundary of the hexagonal phase.This work
makes clear that Tc would increase continuously (from 2 K to 5.5 K) as we
approach this boundary (x = 0.20), if no ordering would take place - as its is
approximately the case in CsxWO3. This behaviour is reminiscent of the
tetragonal tungsten bronze NaxWO3 and asks the same question : what mechanism
is responsible for this large increase of Tc despite the considerable
associated reduction of the electron density of state ? By reviewing the other
available data on these bronzes we conclude that the theoretical models which
are able to answer this question are probably those where the instability of
the lattice plays a major role and, particularly, the model which call upon
local structural excitations (LSE), associated with the missing alkali atoms.Comment: To be published in Physical Review
Investigating evidence for different black hole accretion modes since redshift z~1
Chandra data in the COSMOS, AEGIS-XD and 4Ms CDFS are combined with
optical/near-IR photometry to determine the rest-frame U-V vs V-J colours of
X-ray AGN hosts at mean redshifts 0.40 and 0.85. This combination of colours
(UVJ) provides an efficient means of separating quiescent from star-forming,
including dust reddened, galaxies. Morphological information emphasises
differences between AGN split by their UVJ colours. AGN in quiescent galaxies
are dominated by spheroids, while star-forming hosts are split between bulges
and disks. The UVJ diagram of AGN hosts is then used to set limits on the
accretion density associated with evolved and star-forming systems. Most of the
black hole growth since z~1 is associated with star-forming hosts.
Nevertheless, ~15-20% of the X-ray luminosity density since z~1, is taking
place in the quiescent region of the UVJ diagram. For the z~0.40 subsample,
there is tentative evidence (2sigma significance), that AGN split by their UVJ
colours differ in Eddington ratio. AGN in star-forming hosts dominate at high
Eddington ratios, while AGN in quiescent hosts become increasingly important as
a fraction of the total population toward low Eddington ratios. At higher
redshift, z~0.8, such differences are significant at the 2sigma level only at
Eddington ratios >1e-3. These findings are consistent with scenarios in which
diverse accretion modes are responsible for the build-up of SMBHs at the
centres of galaxies. We compare our results with the GALFORM semi-analytic
model, which postulates two black hole fuelling modes, the first linked to
star-formation and the second occuring in passive galaxies. GALFORM predicts a
larger fraction of black hole growth in quiescent galaxies at z<1, compared to
the data. Relaxing the strong assumption of the model that passive AGN hosts
have zero star-formation rate could reconcile this disagreement.Comment: MNRAS accepte
PRIMUS + DEEP2: Clustering of X-ray, Radio and IR-AGN at z~0.7
We measure the clustering of X-ray, radio, and mid-IR-selected active
galactic nuclei (AGN) at 0.2 < z < 1.2 using multi-wavelength imaging and
spectroscopic redshifts from the PRIMUS and DEEP2 redshift surveys, covering 7
separate fields spanning ~10 square degrees. Using the cross-correlation of AGN
with dense galaxy samples, we measure the clustering scale length and slope, as
well as the bias, of AGN selected at different wavelengths. Similar to previous
studies, we find that X-ray and radio AGN are more clustered than
mid-IR-selected AGN. We further compare the clustering of each AGN sample with
matched galaxy samples designed to have the same stellar mass, star formation
rate, and redshift distributions as the AGN host galaxies and find no
significant differences between their clustering properties. The observed
differences in the clustering of AGN selected at different wavelengths can
therefore be explained by the clustering differences of their host populations,
which have different distributions in both stellar mass and star formation
rate. Selection biases inherent in AGN selection, therefore, determine the
clustering of observed AGN samples. We further find no significant difference
between the clustering of obscured and unobscured AGN, using IRAC or WISE
colors or X-ray hardness ratio.Comment: Accepted to ApJ. 23 emulateapj pages, 15 figures, 4 table
The X-ray luminosity function of AGN at z~3
We combine Lyman-break colour selection with ultradeep (> 200 ks) Chandra
X-ray imaging over a survey area of ~0.35 deg^2 to select high redshift AGN.
Applying careful corrections for both the optical and X-ray selection
functions, the data allow us to make the most accurate determination to date of
the faint end of the X-ray luminosity function (XLF) at z~3. Our methodology
recovers a number density of X-ray sources at this redshift which is at least
as high as previous surveys, demonstrating that it is an effective way of
selecting high z AGN. Comparing to results at z=1, we find no evidence that the
faint slope of the XLF flattens at high z, but we do find significant (factor
~3.6) negative evolution of the space density of low luminosity AGN. Combining
with bright end data from very wide surveys we also see marginal evidence for
continued positive evolution of the characteristic break luminosity L*. Our
data therefore support models of luminosity-dependent density evolution between
z=1 and z=3. A sharp upturn in the the XLF is seen at the very lowest
luminosities (Lx < 10^42.5 erg s^-1), most likely due to the contribution of
pure X-ray starburst galaxies at very faint fluxes.Comment: 16 pages, 9 figures, accepted for publication in MNRA
PRIMUS: Galaxy Clustering as a Function of Luminosity and Color at 0.2<z<1
We present measurements of the luminosity and color-dependence of galaxy
clustering at 0.2<z<1.0 in the PRIsm MUlti-object Survey (PRIMUS). We quantify
the clustering with the redshift-space and projected two-point correlation
functions, xi(rp,pi) and wp(rp), using volume-limited samples constructed from
a parent sample of over 130,000 galaxies with robust redshifts in seven
independent fields covering 9 sq. deg. of sky. We quantify how the
scale-dependent clustering amplitude increases with increasing luminosity and
redder color, with relatively small errors over large volumes. We find that red
galaxies have stronger small-scale (0.1<rp<1 Mpc/h) clustering and steeper
correlation functions compared to blue galaxies, as well as a strong color
dependent clustering within the red sequence alone. We interpret our measured
clustering trends in terms of galaxy bias and obtain values between
b_gal=0.9-2.5, quantifying how galaxies are biased tracers of dark matter
depending on their luminosity and color. We also interpret the color dependence
with mock catalogs, and find that the clustering of blue galaxies is nearly
constant with color, while redder galaxies have stronger clustering in the
one-halo term due to a higher satellite galaxy fraction. In addition, we
measure the evolution of the clustering strength and bias, and we do not detect
statistically significant departures from passive evolution. We argue that the
luminosity- and color-environment (or halo mass) relations of galaxies have not
significantly evolved since z=1. Finally, using jackknife subsampling methods,
we find that sampling fluctuations are important and that the COSMOS field is
generally an outlier, due to having more overdense structures than other
fields; we find that 'cosmic variance' can be a significant source of
uncertainty for high-redshift clustering measurements.Comment: 22 pages, 21 figures, matches version published in Ap
- …
