2,882 research outputs found
Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at = 2.76$ TeV
In ultrarelativistic heavy-ion collisions, the event-by-event variation of
the elliptic flow reflects fluctuations in the shape of the initial state
of the system. This allows to select events with the same centrality but
different initial geometry. This selection technique, Event Shape Engineering,
has been used in the analysis of charge-dependent two- and three-particle
correlations in Pb-Pb collisions at TeV. The
two-particle correlator ,
calculated for different combinations of charges and , is
almost independent of (for a given centrality), while the three-particle
correlator
scales almost linearly both with the event and charged-particle
pseudorapidity density. The charge dependence of the three-particle correlator
is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity
violating effect of the strong interaction. However, its measured dependence on
points to a large non-CME contribution to the correlator. Comparing the
results with Monte Carlo calculations including a magnetic field due to the
spectators, the upper limit of the CME signal contribution to the
three-particle correlator in the 10-50% centrality interval is found to be
26-33% at 95% confidence level.Comment: 20 pages, 6 captioned figures, 1 tables, authors from page 15,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/382
Measurement of the production of charm jets tagged with D mesons in pp collisions at = 7 TeV
The production of charm jets in proton-proton collisions at a center-of-mass
energy of TeV was measured with the ALICE detector at the CERN
Large Hadron Collider. The measurement is based on a data sample corresponding
to a total integrated luminosity of , collected using a
minimum-bias trigger. Charm jets are identified by the presence of a D
meson among their constituents. The D mesons are reconstructed from their
hadronic decay DK. The D-meson tagged jets are
reconstructed using tracks of charged particles (track-based jets) with the
anti- algorithm in the jet transverse momentum range
and pseudorapidity
. The fraction of charged jets containing a D-meson
increases with from to . The distribution of D-meson tagged jets as a
function of the jet momentum fraction carried by the D meson in the
direction of the jet axis () is reported for two ranges
of jet transverse momenta, and
in the intervals
and , respectively. The
data are compared with results from Monte Carlo event generators (PYTHIA 6,
PYTHIA 8 and Herwig 7) and with a Next-to-Leading-Order perturbative Quantum
Chromodynamics calculation, obtained with the POWHEG method and interfaced with
PYTHIA 6 for the generation of the parton shower, fragmentation, hadronisation
and underlying event.Comment: 29 pages, 8 captioned figures, 3 tables, authors from page 24,
published version, figures at http://alice-publications.web.cern.ch/node/525
The Atacama Cosmology Telescope: The polarization-sensitive ACTPol instrument
The Atacama Cosmology Telescope (ACT) is designed to make high angular
resolution measurements of anisotropies in the Cosmic Microwave Background
(CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for
ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3
degree field of view, 100 mK cryogenics with continuous cooling, and meta
material anti-reflection coatings. ACTPol comprises three arrays with separate
cryogenic optics: two arrays at a central frequency of 148 GHz and one array
operating simultaneously at both 97 GHz and 148 GHz. The combined instrument
sensitivity, angular resolution, and sky coverage are optimized for measuring
angular power spectra, clusters via the thermal Sunyaev-Zel'dovich and kinetic
Sunyaev-Zel'dovich signals, and CMB lensing due to large scale structure. The
receiver was commissioned with its first 148 GHz array in 2013, observed with
both 148 GHz arrays in 2014, and has recently completed its first full season
of operations with the full suite of three arrays. This paper provides an
overview of the design and initial performance of the receiver and related
systems
Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope
We present a new measurement of the kinematic Sunyaev-Zeldovich effect using
data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation
Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area,
we evaluate the mean pairwise baryon momentum associated with the positions of
50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A
non-zero signal arises from the large-scale motions of halos containing the
sample galaxies. The data fits an analytical signal model well, with the
optical depth to microwave photon scattering as a free parameter determining
the overall signal amplitude. We estimate the covariance matrix of the mean
pairwise momentum as a function of galaxy separation, using microwave sky
simulations, jackknife evaluation, and bootstrap estimates. The most
conservative simulation-based errors give signal-to-noise estimates between 3.6
and 4.1 for varying galaxy luminosity cuts. We discuss how the other error
determinations can lead to higher signal-to-noise values, and consider the
impact of several possible systematic errors. Estimates of the optical depth
from the average thermal Sunyaev-Zeldovich signal at the sample galaxy
positions are broadly consistent with those obtained from the mean pairwise
momentum signal.Comment: 15 pages, 8 figures, 2 table
Recommended from our members
Measurement of electrons from heavy-flavour hadron decays as a function of multiplicity in p-Pb collisions at √sNN = 5.02 TeV
The multiplicity dependence of electron production from heavy-flavour hadron decays as a function of transverse momentum was measured in p-Pb collisions at sNN = 5.02 TeV using the ALICE detector at the LHC. The measurement was performed in the centre-of-mass rapidity interval −1.07 < ycms< 0.14 and transverse momentum interval 2 < pT< 16 GeV/c. The multiplicity dependence of the production of electrons from heavy-flavour hadron decays was studied by comparing the pT spectra measured for different multiplicity classes with those measured in pp collisions (QpPb) and in peripheral p-Pb collisions (Qcp). The QpPb results obtained are consistent with unity within uncertainties in the measured pT interval and event classes. This indicates that heavy-flavour decay electron production is consistent with binary scaling and independent of the geometry of the collision system. Additionally, the results suggest that cold nuclear matter effects are negligible within uncertainties, in the production of heavy-flavour decay electrons at midrapidity in p-Pb collisions. [Figure not available: see fulltext.
SWIPE: a bolometric polarimeter for the Large-Scale Polarization Explorer
The balloon-borne LSPE mission is optimized to measure the linear
polarization of the Cosmic Microwave Background at large angular scales. The
Short Wavelength Instrument for the Polarization Explorer (SWIPE) is composed
of 3 arrays of multi-mode bolometers cooled at 0.3K, with optical components
and filters cryogenically cooled below 4K to reduce the background on the
detectors. Polarimetry is achieved by means of large rotating half-wave plates
and wire-grid polarizers in front of the arrays. The polarization modulator is
the first component of the optical chain, reducing significantly the effect of
instrumental polarization. In SWIPE we trade angular resolution for
sensitivity. The diameter of the entrance pupil of the refractive telescope is
45 cm, while the field optics is optimized to collect tens of modes for each
detector, thus boosting the absorbed power. This approach results in a FWHM
resolution of 1.8, 1.5, 1.2 degrees at 95, 145, 245 GHz respectively. The
expected performance of the three channels is limited by photon noise,
resulting in a final sensitivity around 0.1-0.2 uK per beam, for a 13 days
survey covering 25% of the sky.Comment: In press. Copyright 2012 Society of Photo-Optical Instrumentation
Engineers. One print or electronic copy may be made for personal use only.
Systematic reproduction and distribution, duplication of any material in this
paper for a fee or for commercial purposes, or modification of the content of
the paper are prohibite
The Large-Scale Polarization Explorer (LSPE)
The LSPE is a balloon-borne mission aimed at measuring the polarization of
the Cosmic Microwave Background (CMB) at large angular scales, and in
particular to constrain the curl component of CMB polarization (B-modes)
produced by tensor perturbations generated during cosmic inflation, in the very
early universe. Its primary target is to improve the limit on the ratio of
tensor to scalar perturbations amplitudes down to r = 0.03, at 99.7%
confidence. A second target is to produce wide maps of foreground polarization
generated in our Galaxy by synchrotron emission and interstellar dust emission.
These will be important to map Galactic magnetic fields and to study the
properties of ionized gas and of diffuse interstellar dust in our Galaxy. The
mission is optimized for large angular scales, with coarse angular resolution
(around 1.5 degrees FWHM), and wide sky coverage (25% of the sky). The payload
will fly in a circumpolar long duration balloon mission during the polar night.
Using the Earth as a giant solar shield, the instrument will spin in azimuth,
observing a large fraction of the northern sky. The payload will host two
instruments. An array of coherent polarimeters using cryogenic HEMT amplifiers
will survey the sky at 43 and 90 GHz. An array of bolometric polarimeters,
using large throughput multi-mode bolometers and rotating Half Wave Plates
(HWP), will survey the same sky region in three bands at 95, 145 and 245 GHz.
The wide frequency coverage will allow optimal control of the polarized
foregrounds, with comparable angular resolution at all frequencies.Comment: In press. Copyright 2012 Society of Photo-Optical Instrumentation
Engineers. One print or electronic copy may be made for personal use only.
Systematic reproduction and distribution, duplication of any material in this
paper for a fee or for commercial purposes, or modification of the content of
the paper are prohibite
First measurement of production in pp collisions at = 7 TeV
The production of the charm-strange baryon is measured for
the first time at the LHC via its semileptonic decay into e
in pp collisions at TeV with the ALICE detector. The transverse
momentum () differential cross section multiplied by the branching
ratio is presented in the interval 1 8 GeV/ at
mid-rapidity, 0.5. The transverse momentum dependence of the
baryon production relative to the D meson production is
compared to predictions of event generators with various tunes of the
hadronisation mechanism, which are found to underestimate the measured
cross-section ratio.Comment: 22 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/412
Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at = 5.02 TeV
Two-particle angular correlations between unidentified charged trigger and
associated particles are measured by the ALICE detector in p-Pb collisions at a
nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum
range 0.7 5.0 GeV/ is examined,
to include correlations induced by jets originating from low
momen\-tum-transfer scatterings (minijets). The correlations expressed as
associated yield per trigger particle are obtained in the pseudorapidity range
. The near-side long-range pseudorapidity correlations observed in
high-multiplicity p-Pb collisions are subtracted from both near-side
short-range and away-side correlations in order to remove the non-jet-like
components. The yields in the jet-like peaks are found to be invariant with
event multiplicity with the exception of events with low multiplicity. This
invariance is consistent with the particles being produced via the incoherent
fragmentation of multiple parton--parton scatterings, while the yield related
to the previously observed ridge structures is not jet-related. The number of
uncorrelated sources of particle production is found to increase linearly with
multiplicity, suggesting no saturation of the number of multi-parton
interactions even in the highest multiplicity p-Pb collisions. Further, the
number scales in the intermediate multiplicity region with the number of binary
nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/161
Energy dependence of exclusive photoproduction off protons in ultra-peripheral p-Pb collisions at = 5.02 TeV
The ALICE Collaboration has measured the energy dependence of exclusive
photoproduction of vector mesons off proton targets in
ultra-peripheral p-Pb collisions at a centre-of-mass energy per nucleon pair
TeV. The ee and decay channels
are used to measure the cross section as a function of the rapidity of the
in the range , corresponding to an energy in the
p centre-of-mass in the interval GeV.
The measurements, which are consistent with a power law dependence of the
exclusive photoproduction cross section, are compared to previous
results from HERA and the LHC and to several theoretical models. They are found
to be compatible with previous measurements.Comment: 25 pages, 3 captioned figures, 3 tables, authors from page 19,
published version, figures at http://alice-publications.web.cern.ch/node/455
- …
