148 research outputs found

    Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria.

    Get PDF
    Abstract Increases in the concentration of free ATP within the islet β-cell may couple elevations in blood glucose to insulin release by closing ATP-sensitive K+(KATP) channels and activating Ca2+ influx. Here, we use recombinant targeted luciferases and photon counting imaging to monitor changes in free [ATP] in subdomains of single living MIN6 and primary β-cells. Resting [ATP] in the cytosol ([ATP]c), in the mitochondrial matrix ([ATP]m), and beneath the plasma membrane ([ATP]pm) were similar (∼1 mm). Elevations in extracellular glucose concentration (3–30 mm) increased free [ATP] in each domain with distinct kinetics. Thus, sustained increases in [ATP]m and [ATP]pm were observed, but only a transient increase in [ATP]c. However, detectable increases in [ATP]c and [ATP]pm, but not [ATP]m, required extracellular Ca2+. Enhancement of glucose-induced Ca2+ influx with high [K+] had little effect on the apparent [ATP]c and [ATP]m increases but augmented the [ATP]pm increase. Underlying these changes, glucose increased the mitochondrial proton motive force, an effect mimicked by high [K+]. These data support a model in which glucose increases [ATP]m both through enhanced substrate supply and by progressive Ca2+-dependent activation of mitochondrial enzymes. This may then lead to a privileged elevation of [ATP]pm, which may be essential for the sustained closure of KATP channels. Luciferase imaging would appear to be a useful new tool for dynamic in vivo imaging of free ATP concentration

    The English School Reforms: Competition, Innovation and Fragmentation

    Get PDF
    The last 30 years have seen efforts by successive governments, of different political persuasions, to improve the English education system. Common to all of these reform efforts is a concern to close the gap in attainment between students from economically disadvantaged students and their peers, although the approaches tried have varied considerably. More recently, they have involved an increased emphasis on the idea of allowing schools greater autonomy within a policy context based on market forces as the main improvement strategy. In this chapter, we analyse these developments in order to draw lessons for those in other countries who are interested in promoting greater equity within their national education systems. This leads us to argue that whilst school autonomy can be a positive force—particular where it encourages teachers to work together in exploring more inclusive practices—it requires coordination at the local level and the introduction of accountability arrangements that provide space for experimentation, as well as resources to promote the professional development of teachers

    La educación inclusiva frente a las desigualdades sociales: un estado de la cuestion y algunas reflexiones geograficas

    Get PDF
    Este artículo establece un estado de la cuestión e la educación inclusiva en el mundo y sugiere algunas reflexiones al respecto. El primer apartado recuerda las conexiones ineludibles entre las preocupaciones educativas por la educación inclusiva y las preocupaciones más generales por la desigualdad. El segundo consigna los criterios de búsqueda de las publicaciones académicas, y observa dos grandes temas en sus contenidos: sobre todo, el cambio interno de las escuelas atrae las miradas, pero en segundo plano también el entorno territorial despierta algunas inquietudes. El tercero anota los criterios de búsqueda de la documentación del Banco Mundial, la OCDE y la UNESCO. En este ámbito los simposios de la Oficina Internacional de la Educación de UNESCO revelan una interpretación dispar, aunque convergente, del concepto de educación inclusiva en las distintas regiones mundiales. Asimismo, todas las publicaciones oficiales muestran una atención prioritaria a las dinámicas internas de las escuelas, puesto que apenas algunas esbozan ciertas relaciones entre la educación inclusiva y las políticas públicas. El último apartado adelanta varios argumentos a favor de una mayor consideración de las escalas local y estatal de la educación inclusiva. Las principales razones para atender a la dimensión local provienen de la causalidad acumulativa de las privaciones sociales, de la necesidad de articular la acción de las escuelas y de la posibilidad de abrir un espacio significativo para la participación ciudadana. Asimismo, las principales razones para atender a la dimensión estatal surgen de las posibles sinergias entre la educación inclusiva y la expansión educativa (p. ej. ¿es correlativo el avance de la escolarización en los distintos ciclos escolares?) como también entre la educación inclusiva y la protección social (p. ej. ¿tienen una implicación pedagógica consistente las abundantes condiciones educativas de las transferencias sociales?

    Glucose sensing in the pancreatic beta cell: a computational systems analysis

    Get PDF

    Pulsatility of insulin release – a clinically important phenomenon

    Get PDF
    The mechanisms and clinical importance of pulsatile insulin release are presented against the background of more than half a century of companionship with the islets of Langerhans. The insulin-secreting β-cells are oscillators with intrinsic variations of cytoplasmic ATP and Ca2+. Within the islets the β-cells are mutually entrained into a common rhythm by gap junctions and diffusible factors (ATP). Synchronization of the different islets in the pancreas is supposed to be due to adjustment of the oscillations to the same phase by neural output of acetylcholine and ATP. Studies of hormone secretion from the perfused pancreas of rats and mice revealed that glucose induces pulses of glucagon anti-synchronous with pulses of insulin and somatostatin. The anti-synchrony may result from a paracrine action of somatostatin on the glucagon-producing α-cells. Purinoceptors have a key function for pulsatile release of islet hormones. It was possible to remove the glucagon and somatostatin pulses with maintenance of those of insulin with an inhibitor of the P2Y1 receptors. Knock-out of the adenosine A1 receptor prolonged the pulses of glucagon and somatostatin without affecting the duration of the insulin pulses. Studies of isolated human islets indicate similar relations between pulses of insulin, glucagon, and somatostatin as found during perfusion of the rodent pancreas. The observation of reversed cycles of insulin and glucagon adds to the understanding how the islets regulate hepatic glucose production. Current protocols for pulsatile intravenous infusion therapy (PIVIT) should be modified to mimic the anti-synchrony between insulin and glucagon normally seen in the portal blood

    On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.

    Get PDF
    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life

    Global Self-Organization of the Cellular Metabolic Structure

    Get PDF
    Background: Over many years, it has been assumed that enzymes work either in an isolated way, or organized in small catalytic groups. Several studies performed using "metabolic networks models'' are helping to understand the degree of functional complexity that characterizes enzymatic dynamic systems. In a previous work, we used "dissipative metabolic networks'' (DMNs) to show that enzymes can present a self-organized global functional structure, in which several sets of enzymes are always in an active state, whereas the rest of molecular catalytic sets exhibit dynamics of on-off changing states. We suggested that this kind of global metabolic dynamics might be a genuine and universal functional configuration of the cellular metabolic structure, common to all living cells. Later, a different group has shown experimentally that this kind of functional structure does, indeed, exist in several microorganisms. Methodology/Principal Findings: Here we have analyzed around 2.500.000 different DMNs in order to investigate the underlying mechanism of this dynamic global configuration. The numerical analyses that we have performed show that this global configuration is an emergent property inherent to the cellular metabolic dynamics. Concretely, we have found that the existence of a high number of enzymatic subsystems belonging to the DMNs is the fundamental element for the spontaneous emergence of a functional reactive structure characterized by a metabolic core formed by several sets of enzymes always in an active state. Conclusions/Significance: This self-organized dynamic structure seems to be an intrinsic characteristic of metabolism, common to all living cellular organisms. To better understand cellular functionality, it will be crucial to structurally characterize these enzymatic self-organized global structures.Supported by the Spanish Ministry of Science and Education Grants MTM2005-01504, MTM2004-04665, partly with FEDER funds, and by the Basque Government, Grant IT252-07
    corecore