121 research outputs found
Efficient DCT-MCM Detection for Single and Multi-Antenna Wireless Systems
The discrete cosine transform (DCT) based multicarrier modulation (MCM) system is regarded as one of the promising transmission techniques for future wireless communications. By employing cosine basis as orthogonal functions for multiplexing each real-valued symbol with symbol period of T, it is able to maintain the subcarrier orthogonality while reducing frequency spacing to 1/(2T) Hz, which is only half of that compared to discrete Fourier transform (DFT) based multicarrier systems. In this paper, following one of the effective transmission models by which zeros are inserted as guard sequence and the DCT operation at the receiver is replaced by DFT of double length, we reformulate and evaluate three classic detection methods by appropriately processing the post-DFT signals both for single antenna and multiple-input multiple-output (MIMO) DCT-MCM systems. In all cases, we show that with our reformulated detection approaches, DCT-MCM schemes can outperform, in terms of error-rate, conventional OFDM-based systems
Performance analysis and optimization of DCT-based multicarrier system on frequency-selective fading channels
Regarded as one of the most promising transmission techniques for future wireless communications, the discrete cosine transform (DCT) based multicarrier modulation (MCM) system employs cosine basis as orthogonal functions for real-modulated symbols multiplexing, by which the minimum orthogonal frequency spacing can be reduced by half compared to discrete Fourier transform (DFT) based one. With a time-reversed pre-filter employed at the front of the receiver, interference-free one-tap equalization is achievable for the DCT-based systems. However, due to the correlated pre-filtering operation in time domain, the signal-to-noise ratio (SNR) is enhanced as a result at the output. This leads to reformulated detection criterion to compensate for such filtering effect, rendering minimum-mean-square-error (MMSE) and maximum likelihood (ML) detections applicable to the DCT-based multicarrier system. In this paper, following on the pre-filtering based DCT-MCM model that build in the literature work, we extend the overall system by considering both transceiver perfections and imperfections, where frequency offset, time offset and insufficient guard sequence are included. In the presence of those imperfection errors, the DCT-MCM systems are analysed in terms of desired signal power, inter-carrier interference (ICI) and inter-symbol interference (ISI). Thereafter, new detection algorithms based on zero forcing (ZF) iterative results are proposed to mitigate the imperfection effect. Numerical results show that the theoretical analysis match the simulation results, and the proposed iterative detection algorithms are able to improve the overall system performance significantly
A numerical study of residual flow induced by eddy viscosity-shear covariance in a tidally energetic estuary
Abstract(#br)The inner regime of an estuary has unique tidal mixing processes but received relatively less attention. A numerical model was developed to investigate the tidal variability of vertical mixing and the residual flow induced by eddy viscosity–shear covariance (ESCO) in the inner regime of a tidally energetic estuary in Southeastern China. Because of migration of the saltwater/freshwater interface, the water column in the inner regime undergoes a saltwater-dominant high-water period and a freshwater-dominant low-water period during a tidal cycle. The different mixing processes of high- and low-water periods led to typical (reverse) internal tidal asymmetry, i.e. stronger (weaker) mixing during flood tides than ebb tides when the tidal range was large (small). Tidal straining was the main driver of internal tidal asymmetry during the high-water period, while the asymmetries of duration and current velocity between flood and ebb were the main drivers during the low-water period. For typical internal tidal asymmetry, the ESCO stress was negative and the ESCO flow had a two-layer structure with landward flow near the bottom and seaward flow near the surface. For reverse internal tidal asymmetry, the ESCO stress was positive and the vertical pattern of the ESCO flow was reversed. The magnitude of the ESCO flow was several times greater than that of the density-driven flow. The reverse internal tidal asymmetry occurred in the freshwater-dominant low-water period indicates that the ESCO stress could be an important driver of tidal rectification flow in homogeneous coastal waters
Target SSR-Seq: A Novel SSR Genotyping Technology Associate With Perfect SSRs in Genetic Analysis of Cucumber Varieties
Simple sequence repeats (SSR) – also known as microsatellites – have been used extensively in genetic analysis, fine mapping, quantitative trait locus (QTL) mapping, as well as marker-assisted selection (MAS) breeding and other techniques. Despite a plethora of studies reporting that perfect SSRs with stable motifs and flanking sequences are more efficient for genetic research, the lack of a high throughput technology for SSR genotyping has limited their use as genetic targets in many crops. In this study, we developed a technology called Target SSR-seq that combined the multiplexed amplification of perfect SSRs with high throughput sequencing. This method can genotype plenty of SSR loci in hundreds of samples with highly accurate results, due to the substantial coverage afforded by high throughput sequencing. We also detected 844 perfect SSRs based on 182 resequencing datasets in cucumber, of which 91 SSRs were selected for Target SSR-seq. Finally, 122 SSRs, including 31 SSRs for varieties identification, were used to genotype 382 key cucumber varieties readily available in Chinese markets using our Target SSR-seq method. Libraries of PCR products were constructed and then sequenced on the Illumina HiSeq X Ten platform. Bioinformatics analysis revealed that 111 filtered SSRs were accurately genotyped with an average coverage of 1289× at an extremely low cost; furthermore, 398 alleles were observed in 382 cucumber cultivars. Genetic analysis identified four populations: northern China type, southern China type, European type, and Xishuangbanna type. Moreover, we acquired a set of 16 core SSRs for the identification of 382 cucumber varieties, of which 42 were isolated as backbone cucumber varieties. This study demonstrated that Target SSR-seq is a novel and efficient method for genetic research
Controllable CO2 Electrocatalytic Reduction via Ferroelectric Switching on Single Atom Anchored In2Se3 Monolayer
Efficient and selective CO2 electroreduction into chemical fuels promises to alleviate environmental pollution and energy crisis, but it relies on catalysts with controllable product selectivity and reaction path. Here, by means of first-principles calculations, we identify six ferroelectric catalysts comprising transition-metal atoms anchored on In2Se3 monolayer, whose catalytic performance can be controlled by ferroelectric switching based on adjusted d-band center and occupation of supported metal atoms. The polarization dependent activation allows effective control of the limiting potential of CO2 reduction on TM@In2Se3 (TM = Ni, Pd, Rh, Nb, and Re) as well as the reaction paths and final products on Nb@In2Se3 and Re@In2Se3. Interestingly, the ferroelectric switching can even reactivate the stuck catalytic CO2 reduction on Zr@In2Se3. The fairly low limiting potential and the unique ferroelectric controllable CO2 catalytic performance on atomically dispersed transition-metals on In2Se3 clearly distinguish them from traditional single atom catalysts, and open an avenue toward improving catalytic activity and selectivity for efficient and controllable electrochemical CO2 reduction reaction
A new operando surface restructuring pathway via ion-pairing of catalyst and electrolyte for water oxidation
The highly efficient and stable electrolysis needs the rational control of the catalytically active interface during the reactions. Here we report a new operando surface restructuring pathway activated by pairing catalyst and electrolyte ions. Using SrCoO3-δ-based perovskites as model catalysts, we unveil the critical role of matching the catalyst properties with the electrolyte conditions in modulating catalyst ion leaching and steering surface restructuring processes toward efficient oxygen evolution reaction catalysis in both pH-neutral and alkaline electrolytes. Our results regarding multiple perovskites show that the catalyst ion leaching is controlled by catalyst ion solubility and anions of the electrolyte. Only when the electrolyte cations are smaller than catalyst's leaching cations, the formation of an outer amorphous shell can be triggered via backfilling electrolyte cations into the cationic vacancy at the catalyst surface under electrochemical polarization. Consequently, the current density of reconstructed SrCoO3-δ is increased by 21 folds compared to the pristine SrCoO3-δ at 1.75 V vs. reversible hydrogen electrode and outperforms the benchmark IrO2 by 2.1 folds and most state-of-the-art electrocatalysts in the pH-neutral electrolyte. Our work could be a starting point to rationally control the electrocatalyst surface restructuring via matching the compositional chemistry of the catalyst with the electrolyte properties
Toward Building a Physical Proxy for Gas-Phase Sulfuric Acid Concentration Based on Its Budget Analysis in Polluted Yangtze River Delta, East China
Gaseous sulfuric acid (H2SO4) is a crucial precursor for secondary aerosol formation, particularly for new particle formation (NPF) that plays an essential role in the global number budget of aerosol particles and cloud condensation nuclei. Due to technology challenges, global-wide and long-term measurements of gaseous H2SO4 are currently very challenging. Empirical proxies for H2SO4 have been derived mainly based on short-term intensive campaigns. In this work, we performed comprehensive measurements of H2SO4 and related parameters in the polluted Yangtze River Delta in East China during four seasons and developed a physical proxy based on the budget analysis of gaseous H2SO4. Besides the photo-oxidation of SO2, we found that primary emissions can contribute considerably, particularly at night. Dry deposition has the potential to be a non-negligible sink, in addition to condensation onto particle surfaces. Compared with the empirical proxies, the newly developed physical proxy demonstrates extraordinary stability in all the seasons and has the potential to be widely used to improve the understanding of global NPF fundamentally.Peer reviewe
Up-regulation of LCN2 in the anterior cingulate cortex contributes to neural injury-induced chronic pain
Chronic pain caused by disease or injury affects more than 30% of the general population. The molecular and cellular mechanisms underpinning the development of chronic pain remain unclear, resulting in scant effective treatments. Here, we combined electrophysiological recording, in vivo two-photon (2P) calcium imaging, fiber photometry, Western blotting, and chemogenetic methods to define a role for the secreted pro-inflammatory factor, Lipocalin-2 (LCN2), in chronic pain development in mice with spared nerve injury (SNI). We found that LCN2 expression was upregulated in the anterior cingulate cortex (ACC) at 14 days after SNI, resulting in hyperactivity of ACC glutamatergic neurons (ACCGlu) and pain sensitization. By contrast, suppressing LCN2 protein levels in the ACC with viral constructs or exogenous application of neutralizing antibodies leads to significant attenuation of chronic pain by preventing ACCGlu neuronal hyperactivity in SNI 2W mice. In addition, administering purified recombinant LCN2 protein in the ACC could induce pain sensitization by inducing ACCGlu neuronal hyperactivity in naïve mice. This study provides a mechanism by which LCN2-mediated hyperactivity of ACCGlu neurons contributes to pain sensitization, and reveals a new potential target for treating chronic pain
Role of iodine oxoacids in atmospheric aerosol nucleation
Iodic acid (HIO₃) is known to form aerosol particles in coastal marine regions, but predicted nucleation and growth rates are lacking. Using the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we find that the nucleation rates of HIO₃ particles are rapid, even exceeding sulfuric acid–ammonia rates under similar conditions. We also find that ion-induced nucleation involves IO₃⁻ and the sequential addition of HIO₃ and that it proceeds at the kinetic limit below +10°C. In contrast, neutral nucleation involves the repeated sequential addition of iodous acid (HIO₂) followed by HIO₃, showing that HIO₂ plays a key stabilizing role. Freshly formed particles are composed almost entirely of HIO₃, which drives rapid particle growth at the kinetic limit. Our measurements indicate that iodine oxoacid particle formation can compete with sulfuric acid in pristine regions of the atmosphere
Output SNR Analysis and Detection Criteria for Optimum DCT-Based Multicarrier System
The discrete cosine transform (DCT) based multicarrier system is regarded as one of the complementary multicarrier transmission techniques for 5th Generation (5G) applications in near future. By employing cosine basis as orthogonal functions for multiplexing each real-valued symbol with symbol period of T, it is able to reduce the minimum orthogonal frequency spacing to 1/(2T) Hz, which is only half of that compared to discrete Fourier transform (DFT) based multicarrier systems. Critical to the optimal DCT-based system design that achieves interference-free single-tap equalization, not only both prefix and suffix are needed as symmetric extension of information block, but also a so-called front-end pre-filter is necessarily introduced at the receiver side. Since the pre-filtering process is essentially a time reversed convolution for continuous inputs, the output signal-to-noise ratio (SNR) for each subcarrier after filtering is enhanced. In this paper, the impact of pre-filtering on the system performance is analyzed in terms of ergodic output SNR per subcarrier. This is followed by reformulated detection criterion where such filtering process is taken into consideration. Numerical results show that under modified detection criteria, the proposed detection algorithms improve the overall bit error rate (BER) performance effectively
- …