43 research outputs found

    Closure of the Bering Strait caused Mid-Pleistocene Transition cooling

    Get PDF
    The Mid-Pleistocene Transition (MPT) is characterised by cooling and lengthening glacial cycles from 600–1200 ka, thought to be driven by reductions in glacial CO2 in particular from ~900 ka onwards. Reduced high latitude upwelling, a process that retains CO2 within the deep ocean over glacials, could have aided drawdown but has so far not been constrained in either hemisphere over the MPT. Here, we find that reduced nutrient upwelling in the Bering Sea, and North Pacific Intermediate Water expansion, coincided with the MPT and became more persistent at ~900 ka. We propose reduced upwelling was controlled by expanding sea ice and North Pacific Intermediate Water formation, which may have been enhanced by closure of the Bering Strait. The regional extent of North Pacific Intermediate Water across the subarctic northwest Pacific would have contributed to lower atmospheric CO2 and global cooling during the MPT

    Deep sub-seafloor prokaryotes stimulated at interfaces over geological time

    Get PDF
    The sub-seafloor biosphere is the largest prokaryotic habitat on Earth1 but also a habitat with the lowest metabolic rates2. Modelled activity rates are very low, indicating that most prokaryotes may be inactive or have extraordinarily slow metabolism2. Here we present results from two Pacific Ocean sites, margin and open ocean, both of which have deep, subsurface stimulation of prokaryotic processes associated with geochemical and/or sedimentary interfaces. At 90m depth in the margin site, stimulation was such that prokaryote numbers were higher (about 13-fold) and activity rates higher than or similar to near-surface values. Analysis of high-molecular-mass DNA confirmed the presence of viable prokaryotes and showed changes in biodiversity with depth that were coupled to geochemistry, including a marked community change at the 90-m interface. At the open ocean site, increases in numbers of prokaryotes at depth were more restricted but also corresponded to increased activity; however, this time they were associated with repeating layers of diatomrich sediments (about 9Myr old). These results show that deep sedimentary prokaryotes can have high activity, have changing diversity associated with interfaces and are active over geological timescales

    The Sediment Green-Blue Color Ratio as a Proxy for Biogenic Silica Productivity Along the Chilean Margin

    Get PDF
    Sediment cores recently collected from the Chilean Margin during D/V JOIDES Resolution Expedition 379T (JR100) document variability in shipboard-generated records of the green/blue (G/B) ratio. These changes show a strong coherence with benthic foraminiferal δ18O, Antarctic ice core records, and sediment lithology (e.g., higher diatom abundances in greener sediment intervals), suggesting a climate-related control on the G/B. Here, we test the utility of G/B as a proxy for diatom productivity at Sites J1002 and J1007 by calibrating G/B to measured biogenic opal. Strong exponential correlations between measured opal% and the G/B were found at both sites. We use the empirical regressions to generate high-resolution records of opal contents (opal%) on the Chilean Margin. Higher productivity tends to result in more reducing sedimentary conditions. Redox-sensitive sedimentary U/Th generally co-varies with the reconstructed opal% at both sites, supporting the association between sediment color, sedimentary U/Th, and productivity. Lastly, we calculated opal mass accumulation rate (MAR) at Site J1007 over the last ∼150,000 years. The G/B-derived opal MAR record from Site J1007 largely tracks existing records derived from traditional wet-alkaline digestion from the south and eastern equatorial Pacific (EEP) Ocean, with a common opal flux peak at ∼50 ka suggesting that increased diatom productivity in the EEP was likely driven by enhanced nutrient supply from the Southern Ocean rather than dust inputs as previously suggested. Collectively, our results identify the G/B ratio as a useful tool with the potential to generate reliable, high-resolution paleoceanographic records that circumvent the traditionally laborious methodology.publishedVersio

    Deep submarine infiltration of altered geothermal groundwater on the south Chilean Margin

    Get PDF
    Submarine groundwater discharge is increasingly recognized as an important component of the oceanic geochemical budget, but knowledge of the distribution of this phenomenon is limited. To date, reports of meteoric inputs to marine sediments are typically limited to shallow shelf and coastal environments, whereas contributions of freshwater along deeper sections of tectonically active margins have generally been attributed to silicate diagenesis, mineral dehydration, or methane hydrate dissociation. Here, using geochemical fingerprinting of pore water data from Site J1003 recovered from the Chilean Margin during D/V JOIDES Resolution Expedition 379 T, we show that substantial offshore freshening reflects deep and focused contributions of meteorically modified geothermal groundwater, which is likely sourced from a reservoir ~2.8 km deep in the Aysén region of Patagonia and infiltrated marine sediments during or shortly after the last glacial period. Emplacement of fossil groundwaters reflects an apparently ubiquitous phenomenon in margin sediments globally, but our results now identify an unappreciated locus of deep submarine groundwater discharge along active margins with potential implications for coastal biogeochemical processes and tectonic instability.publishedVersio

    Pore water chemistry of sediment core GeoB15101-7 and water chemistry of CTD casts GeoB15101-1 and GeoB15101-6

    No full text
    Submarine brine lakes feature sharp and persistent concentration gradients between seawater and brine, though these should be smoothed out by free diffusion in open ocean settings. The anoxic Urania basin of the Eastern Mediterranean contains an ultra sulfidic, hypersaline brine of Messinian origin above a thick layer of suspended sediments. With a dual modeling approach we reconstruct its contemporary stratification by geochemical solute transport fundamentals, and show that thermal convection is required to maintain mixing in the brine and mud layer. The origin of the Urania basin stratification was dated to 1650 years before present, which may be linked to a major earthquake in the region. The persistence of the chemoclines may be key to the development of diverse and specialized microbial communities. Ongoing thermal convection in the fluid mud layer may have important, yet unresolved consequences for sedimentological and geochemical processes, also in similar environments

    Smear slide grain counts from IODP Site 323-U1342

    No full text
    Here we present new grain count data from from Integrated Ocean Drilling Program (IODP) Expedition 323 Site U1342 Holes A, C, and D. New records of sediment composition from laminated and non-laminated were determined from smear slide (quantitative grain counts) and particle size analyses. A subset of samples from three laminated intervals (672-697 ka, 826-836 ka, and 847-851 ka) and four adjacent massive intervals (668-671 ka, 822-825 ka, 803-845 ka, and 853-856 ka) were selected for analyses. Sediment smear slides were examined with a transmitted light petrographic microscope equipped with a standard eyepiece micrometer. Biogenic (pennate and centric diatoms, silicoflagellates, sponge spicules, foraminifers, and coccolithophores), mineral (clay minerals, silt- to sand-size siliciclastics), and volcaniclastic components were identified and their percentage abundances were visually determined under a petrographic microscope using a 40X objective and 10X eyepiece. For each sample, 3 counts were done on different parts of a smear slide using a random walk, and the average value of the 3 counts was used. Particle size analyses on the same samples were carried out with a Beckman-Coulter LS 13 320 laser particle size analyzer (LPSA) attached to an aqueous module equipped with a pump and a built-in ultrasound unit. Size distributions were analyzed from 0.04 µm to 2 mm. Measurements of such a wide particle size range are possible because the particle sizer is composed of two units: a laser beam for conventional (Fraunhofer) diffraction (from 0.4 µm to 2 mm) and a polarized intensity differential scatter (PIDS) unit, which measures particles based on the Mie theory of light scattering (0.04 µm). The samples for the analyses were subsampled and dispersed in the deionized water of the aqueous module of the particle sizer until obscuration values of 10%–15% and PIDS obscuration values of 48%–52% were obtained. The optical model chosen for the grain size determination is the default Fraunhofer model, based on the Fraunhofer theory of light scattering. Data interpolation and statistical analyses were calculated with the laser particle sizer proprietary software (56). Because all samples analyzed tend to log-normal grain size distributions in the 0.04 µm to 2 mm spectrum, geometric rather than arithmetic statistics were applied to the values obtained by the logarithmically spaced size channels of the particle sizer. Smear slide analyses show that laminated sediments contain significantly more diatomaceous biogenic material relative to siliciclastic grains. Laminated samples contain a higher percentage of total diatoms compared to non-laminated samples (72 versus 30%) and a higher percentage of well-preserved (i.e. whole, non-fragmented) diatoms (29 versus 9%), indicative of a high siliceous flux rate. Laminated sediments also display higher proportions of other biogenic particles (including silicoflagellates, sponge spicules, foraminifera, and coccolithophores)

    Causes and timing of recurring subarctic Pacific hypoxia

    No full text
    Several North Pacific studies of the last deglaciation show hypoxia throughout the ocean margins and attribute this phenomenon to the effects of abrupt warming and meltwater inputs. Yet, because of the lack of long records spanning multiple glacial cycles and deglaciation events, it is unclear whether deoxygenation was a regular occurrence of warming events and whether deglaciation and/or other conditions promoted hypoxia throughout time. Here, subarctic Pacific laminated sediments from the past 1.2 million years demonstrate that hypoxic events recurred throughout the Pleistocene as episodes of highly productive phytoplankton growth and were generally associated with interglacial climates, high sea levels, and enhanced nitrate utilization—but not with deglaciations. We suggest that hypoxia was typically stimulated by high productivity from iron fertilization facilitated by redox-remobilized iron from flooded continental shelves

    The tail of the Storegga Slide: insights from the geochemistry and sedimentology of the Norwegian Basin deposits

    No full text
    Deposits within the floor of the Norwegian Basin were sampled to characterize the deposition from the Storegga Slide, the largest known Holocene‐aged continental margin slope failure complex. A 29 to 67 cm thick veneer of variable‐coloured, finely layered Holocene sediment caps a homogeneous, extremely well‐sorted, poorly consolidated, very fine‐grained, grey‐coloured sediment section that is \u3e20 m thick on the basin floor. This homogeneous unit is interpreted to represent the uppermost deposits generated by a gravity flow associated with the last major Storegga Slide event. Sediments analogous to the inferred source material of the slide deposits were collected from upslope on the Norwegian Margin. Sediments sampled within the basin are distinguishable from the purported source sediments, suggesting that size sorting has significantly altered this material along its flow path. Moreover, the very fine grain size (3·1 ± 0·3 μm) suggests that the \u3e20 m thick homogeneous unit which was sampled settled from suspension after the turbulent flow was over. Although the turbulent phase of the gravity flow that moved material out into the basin may have been brief (days), significantly more time (years) is required for turbid sediments to settle and dewater and for the new sea floor to be colonized with a normal benthonic fauna. Pore water sulphate concentrations within the uppermost 20 m of the event deposit are higher than those normally found in sea water. Apparently the impact of microbial sulphate reduction over the last ca 8·1 cal ka bp since the re‐deposition of these sediments has not been adequate to regenerate a typical sulphate gradient of decreasing concentration with sub‐bottom depth. This observation suggests low rates of microbial reactions, which may be attributed to the refractory carbon composition in these re‐deposited sediments
    corecore