316 research outputs found
Any order imaginary time propagation method for solving the Schrodinger equation
The eigenvalue-function pair of the 3D Schr\"odinger equation can be
efficiently computed by use of high order, imaginary time propagators. Due to
the diffusion character of the kinetic energy operator in imaginary time,
algorithms developed so far are at most fourth-order. In this work, we show
that for a grid based algorithm, imaginary time propagation of any even order
can be devised on the basis of multi-product splitting. The effectiveness of
these algorithms, up to the 12 order, is demonstrated by computing
all 120 eigenstates of a model C molecule to very high precisions. The
algorithms are particularly useful when implemented on parallel computer
architectures.Comment: 8 pages, 3 figure
Geometric and impurity effects on quantum rings in magnetic fields
We investigate the effects of impurities and changing ring geometry on the
energetics of quantum rings under different magnetic field strengths. We show
that as the magnetic field and/or the electron number are/is increased, both
the quasiperiodic Aharonov-Bohm oscillations and various magnetic phases become
insensitive to whether the ring is circular or square in shape. This is in
qualitative agreement with experiments. However, we also find that the
Aharonov-Bohm oscillation can be greatly phase-shifted by only a few impurities
and can be completely obliterated by a high level of impurity density. In the
many-electron calculations we use a recently developed fourth-order imaginary
time projection algorithm that can exactly compute the density matrix of a
free-electron in a uniform magnetic field.Comment: 8 pages, 7 figures, to appear in PR
Bacterial Shoot Apical Meristem Inoculation Assay
© Springer Science+Business Media, LLC, part of Springer Nature 2020. By virtue of their sessile nature, plants may not show the fight-and-flight response, but they are not devoid of protecting themselves from disease-causing agents, attack by herbivores, and damages that are caused by other environmental factors. Plants differentially protect their life-sustaining organs such as plant apexes from the attack by microbial pathogens. There are well-established methods to inoculate/infect various plant parts such as leaves, roots, and stems with various different pathogens. The plant shoot apical meristems (SAM) are a high-value plant target that provides niche to stem cell populations. These stem cells are instrumental in maintaining future plant progenies by giving birth to cells that culminate in flowers, leaves, and stems. There are hardly few protocols available that allow us to study immune dynamics of the plant stem cells as they are hindered by various layers of the SAM cell populations. Here, we describe a step-by-step method on how to inoculate the Arabidopsis SAM with model plant pathogen Pseudomonas syringae pv. tomato DC3000
Effects of nitridation on SiC/SiO2 structures studied by hard X-ray photoelectron spectroscopy
SiC is set to enable a new era in power electronics impacting a wide range of energy technologies, from electric vehicles to renewable energy. Its physical characteristics outperform silicon in many aspects, including band gap, breakdown field, and thermal conductivity. The main challenge for further development of SiC-based power semiconductor devices is the quality of the interface between SiC and its native dielectric SiO. High temperature nitridation processes can improve the interface quality and ultimately the device performance immensely, but the underlying chemical processes are still poorly understood. Here, we present an energy-dependent hard X-ray photoelectron spectroscopy (HAXPES) study probing non-destructively SiC and SiO and their interface in device stacks treated in varying atmospheres. We successfully combine laboratory- and synchrotron-based HAXPES to provide unique insights into the chemistry of interface defects and their passivation through nitridation processes
WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche
In Arabidopsis, stem cells maintain the provision of new cells for root growth. They surround a group of slowly dividing cells named the quiescent center (QC), and, together, they form the stem cell niche (SCN). The QC acts as the signaling center of the SCN, repressing differentiation of the surrounding stem cells [ 1] and providing a pool of cells able to replace damaged stem cells [ 2 and 3]. Maintenance of the stem cells depends on the transcription factor WUSCHEL-RELATED HOMEOBOX 5 (WOX5), which is specifically expressed in the QC [ 4]. However, the molecular mechanisms by which WOX5 promotes stem cell fate and whether WOX5 regulates proliferation of the QC are unknown. Here, we reveal a new role for WOX5 in restraining cell division in the cells of the QC, thereby establishing quiescence. In contrast, WOX5 and CYCD3;3/CYCD1;1 both promote cell proliferation in the nascent columella. The additional QC divisions occurring in wox5 mutants are suppressed in mutant combinations with the D type cyclins CYCD3;3 and CYCD1;1. Moreover, ectopic expression of CYCD3;3 in the QC is sufficient to induce cell division in the QC. WOX5 thus suppresses QC divisions that are otherwise promoted by CYCD3;3 and CYCD1;1, in part by interacting with the CYCD3;3 promoter to repress CYCD3;3 expression in the QC. Therefore, we propose a specific role for WOX5 in initiating and maintaining quiescence of the QC by excluding CYCD activity from the QC
The actin cytoskeleton modulates the activation of iNKT cells by segregating CD1d nanoclusters on antigen-presenting cells
Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipid antigens presented in the context of CD1d molecules. The ability of iNKT cells to recognize endogenous antigens represents a distinct immune recognition strategy, which underscores the constitutive memory phenotype of iNKT cells and their activation during inflammatory conditions. However, the mechanisms regulating such “tonic” activation of iNKT cells remain unclear. Here, we show that the spatiotemporal distribution of CD1d molecules on the surface of antigen-presenting cells (APCs) modulates activation of iNKT cells. By using superresolution microscopy, we show that CD1d molecules form nanoclusters at the cell surface of APCs, and their size and density are constrained by the actin cytoskeleton. Dual-color single-particle tracking revealed that diffusing CD1d nanoclusters are actively arrested by the actin cytoskeleton, preventing their further coalescence. Formation of larger nanoclusters occurs in the absence of interactions between CD1d cytosolic tail and the actin cytoskeleton and correlates with enhanced iNKT cell activation. Importantly and consistently with iNKT cell activation during inflammatory conditions, exposure of APCs to the Toll-like receptor 7/8 agonist R848 increases nanocluster density and iNKT cell activation. Overall, these results define a previously unidentified mechanism that modulates iNKT cell autoreactivity based on the tight control by the APC cytoskeleton of the sizes and densities of endogenous antigen-loaded CD1d nanoclusters
Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata
Programmed cell death (PCD) is a key element in normal plant growth and development which may also be induced by various abiotic and biotic stress factors including salt stress. In the present study, morphological, biochemical, and physiological responses of the theoretically immortal unicellular freshwater green alga Micrasterias denticulata were examined after salt (200 mM NaCl or 200 mM KCl) and osmotic stress induced by iso-osmotic sorbitol. KCl caused morphological changes such as cytoplasmic vacuolization, extreme deformation of mitochondria, and ultrastructural changes of Golgi and ER. However, prolonged salt stress (24 h) led to the degradation of organelles by autophagy, a special form of PCD, both in NaCl- and KCl-treated cells. This was indicated by the enclosure of organelles by ER-derived double membranes. DNA of NaCl- and KCl-stressed cells but not of sorbitol-treated cells showed a ladder-like pattern on agarose gel, which means that the ionic rather than the osmotic component of salt stress leads to the activation of the responsible endonuclease. DNA laddering during salt stress could be abrogated by addition of Zn2+. Neither cytochrome c release from mitochondria nor increase in caspase-3-like activity occurred after salt stress. Reactive oxygen species could be detected within 5 min after the onset of salt and osmotic stress. Respiration, photosynthetic activity, and pigment composition indicated an active metabolism which supports programmed rather than necrotic cell death in Micrasterias after salt stress
Effects of nitridation on SiC/SiO(2)structures studied by hard X-ray photoelectron spectroscopy
SiC is set to enable a new era in power electronics impacting a wide range of energy technologies, from electric vehicles to renewable energy. Its physical characteristics outperform silicon in many aspects, including band gap, breakdown field, and thermal conductivity. The main challenge for further development of SiC-based power semiconductor devices is the quality of the interface between SiC and its native dielectric SiO2. High temperature nitridation processes can improve the interface quality and ultimately the device performance immensely, but the underlying chemical processes are still poorly understood. Here, we present an energy-dependent hard x-ray photoelectron spectroscopy (HAXPES) study probing non-destructively SiC and SiO2 and their interface in device stacks treated in varying atmospheres. We successfully combine laboratory- and synchrotron-based HAXPES to provide unique insights into the chemistry of interface defects and their passivation through nitridation processes
The Chromodomain of LIKE HETEROCHROMATIN PROTEIN 1 Is Essential for H3K27me3 Binding and Function during Arabidopsis Development
Polycomb group (PcG) proteins are essential to maintain gene expression patterns during development. Transcriptional repression by PcG proteins involves trimethylation of H3K27 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2) in animals and plants. PRC1 binds to H3K27me3 and is required for transcriptional repression in animals, but in plants PRC1-like activities have remained elusive. One candidate protein that could be involved in PRC1-like functions in plants is LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), because LHP1 associates with genes marked by H3K27me3 in vivo and has a chromodomain that binds H3K27me3 in vitro. Here, we show that disruption of the chromodomain of Arabidopsis thaliana LHP1 abolishes H3K27me3 recognition, releases gene silencing and causes similar phenotypic alterations as transcriptional lhp1 null mutants. Therefore, binding to H3K27me3 is essential for LHP1 protein function
- …