184 research outputs found
Upper and Lower Bounds on Long Dual-Paths in Line Arrangements
Given a line arrangement with lines, we show that there exists a
path of length in the dual graph of formed by its
faces. This bound is tight up to lower order terms. For the bicolored version,
we describe an example of a line arrangement with blue and red lines
with no alternating path longer than . Further, we show that any line
arrangement with lines has a coloring such that it has an alternating path
of length . Our results also hold for pseudoline
arrangements.Comment: 19 page
A History of Flips in Combinatorial Triangulations
Given two combinatorial triangulations, how many edge flips are necessary and
sufficient to convert one into the other? This question has occupied
researchers for over 75 years. We provide a comprehensive survey, including
full proofs, of the various attempts to answer it.Comment: Added a paragraph referencing earlier work in the vertex-labelled
setting that has implications for the unlabeled settin
Quasi-infra-red fixed points and renormalisation group invariant trajectories for non-holomorphic soft supersymmetry breaking
In the MSSM the quasi-infra-red fixed point for the top-quark Yukawa coupling
gives rise to specific predictions for the soft-breaking parameters. We discuss
the extent to which these predictions are modified by the introduction of
additional ``non-holomorphic'' soft-breaking terms. We also show that in a
specific class of theories there exists an RG-invariant trajectory for the
``non-holomorphic'' terms, which can be understood using a holomorphic spurion
term.Comment: 24 pages, TeX, two figures. Uses Harvmac (big) and epsf. Minor errors
corrected, and the RG trajectory explained in terms of a holomorphic spurion
ter
Maximizing Maximal Angles for Plane Straight-Line Graphs
Let be a plane straight-line graph on a finite point set
in general position. The incident angles of a vertex
of are the angles between any two edges of that appear consecutively in
the circular order of the edges incident to .
A plane straight-line graph is called -open if each vertex has an
incident angle of size at least . In this paper we study the following
type of question: What is the maximum angle such that for any finite set
of points in general position we can find a graph from a certain
class of graphs on that is -open? In particular, we consider the
classes of triangulations, spanning trees, and paths on and give tight
bounds in most cases.Comment: 15 pages, 14 figures. Apart of minor corrections, some proofs that
were omitted in the previous version are now include
Embedding Four-directional Paths on Convex Point Sets
A directed path whose edges are assigned labels "up", "down", "right", or
"left" is called \emph{four-directional}, and \emph{three-directional} if at
most three out of the four labels are used. A \emph{direction-consistent
embedding} of an \mbox{-vertex} four-directional path on a set of
points in the plane is a straight-line drawing of where each vertex of
is mapped to a distinct point of and every edge points to the direction
specified by its label. We study planar direction-consistent embeddings of
three- and four-directional paths and provide a complete picture of the problem
for convex point sets.Comment: 11 pages, full conference version including all proof
Bounded-Angle Spanning Tree: Modeling Networks with Angular Constraints
We introduce a new structure for a set of points in the plane and an angle
, which is similar in flavor to a bounded-degree MST. We name this
structure -MST. Let be a set of points in the plane and let be an angle. An -ST of is a spanning tree of the
complete Euclidean graph induced by , with the additional property that for
each point , the smallest angle around containing all the edges
adjacent to is at most . An -MST of is then an
-ST of of minimum weight. For , an -ST does
not always exist, and, for , it always exists. In this paper,
we study the problem of computing an -MST for several common values of
.
Motivated by wireless networks, we formulate the problem in terms of
directional antennas. With each point , we associate a wedge of
angle and apex . The goal is to assign an orientation and a radius
to each wedge , such that the resulting graph is connected and its
MST is an -MST. (We draw an edge between and if , , and .) Unsurprisingly, the problem of computing an
-MST is NP-hard, at least for and . We
present constant-factor approximation algorithms for .
One of our major results is a surprising theorem for ,
which, besides being interesting from a geometric point of view, has important
applications. For example, the theorem guarantees that given any set of
points in the plane and any partitioning of the points into triplets,
one can orient the wedges of each triplet {\em independently}, such that the
graph induced by is connected. We apply the theorem to the {\em antenna
conversion} problem
On the number of simple arrangements of five double pseudolines
We describe an incremental algorithm to enumerate the isomorphism classes of
double pseudoline arrangements. The correction of our algorithm is based on the
connectedness under mutations of the spaces of one-extensions of double
pseudoline arrangements, proved in this paper. Counting results derived from an
implementation of our algorithm are also reported.Comment: 24 pages, 16 figures, 6 table
Gabriel Triangulations and Angle-Monotone Graphs: Local Routing and Recognition
A geometric graph is angle-monotone if every pair of vertices has a path
between them that---after some rotation---is - and -monotone.
Angle-monotone graphs are -spanners and they are increasing-chord
graphs. Dehkordi, Frati, and Gudmundsson introduced angle-monotone graphs in
2014 and proved that Gabriel triangulations are angle-monotone graphs. We give
a polynomial time algorithm to recognize angle-monotone geometric graphs. We
prove that every point set has a plane geometric graph that is generalized
angle-monotone---specifically, we prove that the half--graph is
generalized angle-monotone. We give a local routing algorithm for Gabriel
triangulations that finds a path from any vertex to any vertex whose
length is within times the Euclidean distance from to .
Finally, we prove some lower bounds and limits on local routing algorithms on
Gabriel triangulations.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Interactive architectural modeling with procedural extrusions
We present an interactive procedural modeling system for the exterior of architectural models. Our modeling system is based on procedural extrusions of building footprints. The main novelty of our work is that we can model difficult architectural surfaces in a procedural framework, e.g. curved roofs, overhanging roofs, dormer windows, interior dormer windows, roof constructions with vertical walls, buttresses, chimneys, bay windows, columns, pilasters, and alcoves. We present a user interface to interactively specify procedural extrusions, a sweep plane algorithm to compute a two-manifold architectural surface, and applications to architectural modeling
- …