188 research outputs found

    Statistical Isotropy violation of the CMB brightness fluctuations

    Full text link
    Certain anomalies at large angular scales in the cosmic microwave background measured by WMAP have been suggested as possible evidence of breakdown of statistical isotropy(SI). Most CMB photons free-stream to the present from the surface of last scattering. It is thus reasonable to expect statistical isotropy violation in the CMB photon distribution observed now to have originated from SI violation in the baryon-photon fluid at last scattering, in addition to anisotropy of the primordial power spectrum studied earlier in literature. We consider the generalized anisotropic brightness distribution fluctuations, Δ(k,n^,τ)\Delta(\vec{k}, \hat{n}, \tau) (at conformal time τ\tau) in contrast to the SI case where it is simply a function of k|\vec{k}| and k^n^\hat{k} \cdot \hat{n}. The brightness fluctuations expanded in Bipolar Spherical Harmonic (BipoSH) series, can then be written as Δ12LM(k,τ)\Delta_{\ell_1 \ell_2}^{L M}(\vec{k}, \tau) where L>0L > 0 terms encode deviations from statistical isotropy. We study the evolution of Δ12LM(k,τ)\Delta_{\ell_1 \ell_2}^{L M}(\vec{k}, \tau) from non-zero terms Δ34LM(k,τs)\Delta_{\ell_3 \ell_4}^{L M}(\vec{k}, \tau_s) at last scattering. Similar to the SI case, power at small spherical harmonic (SH) multipoles of Δ34LM(k,τs)\Delta_{\ell_3 \ell_4}^{L M}(\vec{k},\tau_s) at the last scattering, is transferred to Δ12LM(k,τ)\Delta_{\ell_1 \ell_2}^{L M}(\vec{k}, \tau) at larger SH multipoles. The structural similarity is more apparent in the asymptotic expression for large values of the final SH multipoles. This formalism allows an elegant identification of any SI violation observed today to a possible origin in the SI violation present in the baryon-photon fluid (eg., due to the presence of significant magnetic field).Comment: 14 pages, 4 figures, added illustrative example of SI violation in baryon-photon fluid, matches version accepted for publication in Phys. Rev.

    Mechanistic lessons learned from studies of planktonic bacteria with metallic nanomaterials: implications for interactions between nanomaterials and biofilm bacteria

    Get PDF
    Metal and metal oxide nanoparticles (NPs) are used in numerous applications and have high likelihood of entering engineered and natural environmental systems. Careful assessment of the interaction of these NPs with bacteria, particularly biofilm bacteria, is necessary. This perspective discusses mechanisms of NP interaction with bacteria and identifies challenges in understanding NP-biofilm interaction, considering fundamental material attributes and inherent complexities of biofilm structure. The current literature is reviewed, both for planktonic bacteria and biofilms; future challenges and complexities are identified, both in light of the literature and a dataset on the toxicity of silver NPs toward planktonic and biofilm bacteria. This perspective aims to highlight the complexities in such studies and emphasizes the needs for systematic evaluation of NP-biofilm interaction

    Overexpression of branched-chain amino acid aminotransferases rescues the growth defects of cells lacking the Barth syndrome-related gene TAZ1.

    Get PDF
    The yeast protein Taz1 is the orthologue of human Tafazzin, a phospholipid acyltransferase involved in cardiolipin (CL) remodeling via a monolyso CL (MLCL) intermediate. Mutations in Tafazzin lead to Barth syndrome (BTHS), a metabolic and neuromuscular disorder that primarily affects the heart, muscles, and immune system. Similar to observations in fibroblasts and platelets from patients with BTHS or from animal models, abolishing yeast Taz1 results in decreased total CL amounts, increased levels of MLCL, and mitochondrial dysfunction. However, the biochemical mechanisms underlying the mitochondrial dysfunction in BTHS remain unclear. To better understand the pathomechanism of BTHS, we searched for multi-copy suppressors of the taz1Δ growth defect in yeast cells. We identified the branched-chain amino acid transaminases (BCATs) Bat1 and Bat2 as such suppressors. Similarly, overexpression of the mitochondrial isoform BCAT2 in mammalian cells lacking TAZ improves their growth. Elevated levels of Bat1 or Bat2 did not restore the reduced membrane potential, altered stability of respiratory complexes, or the defective accumulation of MLCL species in yeast taz1Δ cells. Importantly, supplying yeast or mammalian cells lacking TAZ1 with certain amino acids restored their growth behavior. Hence, our findings suggest that the metabolism of amino acids has an important and disease-relevant role in cells lacking Taz1 function. KEY MESSAGES: Bat1 and Bat2 are multi-copy suppressors of retarded growth of taz1Δ yeast cells. Overexpression of Bat1/2 in taz1Δ cells does not rescue known mitochondrial defects. Supplementation of amino acids enhances growth of cells lacking Taz1 or Tafazzin. Altered metabolism of amino acids might be involved in the pathomechanism of BTSH

    Next-Generation Multifunctional Carbon-Metal Nanohybrids for Energy and Environmental Applications

    Get PDF
    Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from “less efficient” single-component nanomaterials toward “superior-performance”, next-generation multifunctional nanohybrids. Carbon nanomaterials (e.g., carbon nanotubes, graphene family nanomaterials, carbon dots, and graphitic carbon nitride) and metal/metal oxide nanoparticles (e.g., Ag, Au, CdS, Cu2O, MoS2, TiO2, and ZnO) combinations are the most commonly pursued nanohybrids (carbon–metal nanohybrids; CMNHs), which exhibit appealing properties and promising multifunctionalities for addressing multiple complex challenges faced by humanity at the critical energy–water–environment (EWE) nexus. In this frontier review, we first highlight the altered and newly emerging properties (e.g., electronic and optical attributes, particle size, shape, morphology, crystallinity, dimensionality, carbon/metal ratio, and hybridization mode) of CMNHs that are distinct from those of their parent component materials. We then illustrate how these important newly emerging properties and functions of CMNHs direct their performances at the EWE nexus including energy harvesting (e.g., H2O splitting and CO2 conversion), water treatment (e.g., contaminant removal and membrane technology), and environmental sensing and in situ nanoremediation. This review concludes with identifications of critical knowledge gaps and future research directions for maximizing the benefits of next-generation multifunctional CMNHs at the EWE nexus and beyond.Environmental Biolog

    Search For Gravitational Waves Associated With Gamma-Ray Bursts Detected By Fermi And Swift During The Ligo-Virgo Run O3A

    Get PDF
    We search for gravitational-wave transients associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the first part of the third observing run of Advanced LIGO and Advanced Virgo (2019 April 1 15:00 UTC-2019 October 1 15:00 UTC). A total of 105 GRBs were analyzed using a search for generic gravitational-wave transients; 32 GRBs were analyzed with a search that specifically targets neutron star binary mergers as short GRB progenitors. We find no significant evidence for gravitational-wave signals associated with the GRBs that we followed up, nor for a population of unidentified subthreshold signals. We consider several source types and signal morphologies, and report for these lower bounds on the distance to each GRB

    Design and implementation of a noise temperature measurement system for the Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX)

    Full text link
    This paper describes the design, implementation, and verification of a test-bed for determining the noise temperature of radio antennas operating between 400-800MHz. The requirements for this test-bed were driven by the HIRAX experiment, which uses antennas with embedded amplification, making system noise characterization difficult in the laboratory. The test-bed consists of two large cylindrical cavities, each containing radio-frequency (RF) absorber held at different temperatures (300K and 77K), allowing a measurement of system noise temperature through the well-known 'Y-factor' method. The apparatus has been constructed at Yale, and over the course of the past year has undergone detailed verification measurements. To date, three preliminary noise temperature measurement sets have been conducted using the system, putting us on track to make the first noise temperature measurements of the HIRAX feed and perform the first analysis of feed repeatability.Comment: 19 pages, 12 figure

    GW190521: A Binary Black Hole Merger with a Total Mass of 150 M

    Get PDF
    © 2020 authors. Published by the American Physical Society. On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85-14+21 Mm and 66-18+17 Mm (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 Mm. We calculate the mass of the remnant to be 142-16+28 Mm, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3-2.6+2.4 Gpc, corresponding to a redshift of 0.82-0.34+0.28. The inferred rate of mergers similar to GW190521 is 0.13-0.11+0.30 Gpc-3 yr-1

    GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object

    Get PDF
    © 2020. The American Astronomical Society.. We report the observation of a compact binary coalescence involving a 22.2-24.3 M o˙ black hole and a compact object with a mass of 2.50-2.67 M o˙ (all measurements quoted at the 90% credible level). The gravitational-wave signal, GW190814, was observed during LIGO\u27s and Virgo\u27s third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network. The source was localized to 18.5 deg2 at a distance of 241 +41-41 Mpc; no electromagnetic counterpart has been confirmed to date. The source has the most unequal mass ratio yet measured with gravitational waves , 0.112+0.0090.008, , and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system. The dimensionless spin of the primary black hole is tightly constrained to ≤0.07. Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence. We estimate a merger rate density of 1-23 Gpc-3 yr-1 for the new class of binary coalescence sources that GW190814 represents. Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters. However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models of the formation and mass distribution of compact-object binaries
    corecore