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Metal and metal-oxide nanoparticles (NPs) are used in numerous applications and
have high likelihood of entering engineered and natural environmental systems. Careful
assessment of the interaction of these NPs with bacteria, particularly biofilm bacteria, is
necessary. This perspective discusses mechanisms of NP interaction with bacteria and
identifies challenges in understanding NP–biofilm interaction, considering fundamental
material attributes and inherent complexities of biofilm structure. The current literature is
reviewed, both for planktonic bacteria and biofilms; future challenges and complexities
are identified, both in light of the literature and a dataset on the toxicity of silver
NPs toward planktonic and biofilm bacteria. This perspective aims to highlight the
complexities in such studies and emphasizes the need for systematic evaluation of
NP–biofilm interaction.
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Introduction

Nanomaterials show unique electrical, optoelectronic, physical, catalytic, and photoactive
properties. Metallic nanoparticles (NPs), such as Ag (Chambers et al., 2014) and Cu (Shah et al.,
2012; Arijit Kumar et al., 2014), and nano-scale metal-oxides, such as ZnO (Li et al., 2011a,b), TiO2
(Huang et al., 2008; Brunet et al., 2009; Simon-Deckers et al., 2009), and CuO (Heinlaan et al., 2008;
Chang et al., 2012; Ivask et al., 2014), exhibit antimicrobial properties, making them useful for water
treatment (Theron et al., 2008), odorless textiles (Simoncic and Tomsic, 2010), bandages (Lo et al.,
2009; Chaloupka et al., 2010), and biomedical and dental implants (Chen and Schluesener, 2008;
Allaker, 2010).

Substantial research has examined the impact of metal and metal-oxide NPs on planktonic
(i.e., free-swimming) bacteria. These studies have identified key NP attributes related to NP–
cell interaction and associated mechanisms of toxicity for planktonic cells, but the relevance
of that literature to NP–biofilm interaction is unknown because the biofilm environment and
the biofilm cells themselves are fundamentally different from their planktonic counterparts.
This perspective discusses current knowledge on nano-bacterial interaction via underlying
antimicrobial mechanisms, notes differences between NP interaction with planktonic and biofilm
bacteria, and identifies challenges in NP–biofilm interaction as governed by the complexities of the
bacterial biofilm.
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Differences between Planktonic and
Biofilm Cells

Biofilms [i.e., collections of bacteria associated with a surface
and surrounded by a matrix of extracellular polymeric substances
(EPS)], are common in natural and engineered environments.
Planktonic cells attach to a surface (Figure 1Ai,ii); an EPS
matrix is produced (Figure 1Aiii) consisting of polysaccharides,
proteins, DNA, and lipids (Flemming and Wingender, 2010);
the biofilm matures (Figure 1Aiv) during which time the spatial
distribution of EPS components can change (Ma et al., 2009); the
biofilm acts as a viscoelastic fluid that can undergo detachment
events (Stoodley et al., 2002; Figure 1Av).

Planktonic and biofilm cells exhibit key differences. (1) As
compared to planktonic cells in a homogeneous environment,
biofilm cells are exposed to different microenvironments
depending on their location in the biofilm; for instance, biofilms
can have gradients of electron donor and acceptor (Tang et al.,
2011). (2) Many bacteria can sense surface contact (e.g., by
inhibition of flagellar motion) and modulate their transcriptional
patterns accordingly (reviewed in Wozniak and Parsek, 2014).
For instance, the transcriptional patterns of Campylobacter jejuni
shifted more toward iron uptake, oxidative stress combat, and
membrane transport in biofilms as compared to planktonic cells
(Sampathkumar et al., 2006). (3) Biofilms generally produce
substantially more EPS as compared to planktonic cells, especially

FIGURE 1 | Schematic representing (A) stages in biofilm formation and
growth, (B) metal and metal-oxide nanoparticle (NP) interaction with
planktonic bacteria and immature biofilm, (C) metal and metal-oxide
NP interaction and translocation in mature biofilm, (D) a close-up of
NP interaction with a cell surface, (E) ligand-exchange process of

NPs with extracellular polymeric substances (EPS) in a biofilm, and
(F) band architecture of a metal-oxide NP showing reactive oxygen
species (ROS) generation via electron transfer from the valence band
(Ev) to the conduction band (Ec) and eventually to the surrounding
fluid.
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at low specific growth rates (Evans et al., 1994). Relatedly, distinct
differences were found between the transcriptional profiles of
Pseudomonas aeruginosa biofilm and planktonic cells, where the
expression of EPS-related genes was an important hallmark of the
biofilm (Dötsch et al., 2012).

Such differences between planktonic and biofilm cells will
influence the impact of antimicrobial agents. As compared to
planktonic cells, biofilm cells often show increased tolerance and
resistance to traditional antimicrobial agents; such observations
are linked with biofilm-specific pumps (Gillis et al., 2005),
protection due to biofilm EPS (Billings et al., 2013), and the
ability of biofilms to reduce the concentrations of reactive
oxygen species (ROS; Nguyen et al., 2011; Khakimova et al.,
2013). Thus, the antimicrobiality of NPs (i.e., non-traditional
antimicrobial agents) is likely different between planktonic and
biofilm cells.

Key Mechanisms of Nano-Bacterial
Interaction

Several major mechanisms have been proposed to explain the
stress/toxicity to bacteria exposed to metallic NPs as reviewed
by others (Nel et al., 2006; Manke et al., 2013; Reidy et al.,
2013; von Moos and Slaveykova, 2014; Djurišić et al., 2015):
(a) ROS-mediated oxidative stress, with lipid peroxidation and
DNA damage; (b) dissolution of metal ions, which react with
cellular components; (c) and physical disruption of the cell
envelope. For planktonic bacteria (Figure 1B), these mechanisms
are described as follows.

Effects of ROS
ROS production, under the influence of photo- or chemical-
activation, is a common stress/toxicity mechanism for bacteria
exposed to metal and metal-oxide NPs [e.g., quantum dots
(Lu et al., 2008), Ag (Choi and Hu, 2008), TiO2 (Li et al.,
2012), CuO (Zhao et al., 2013; Laha et al., 2014), and ZnO
(Li et al., 2012)]. ROS is an aggregate term that encompasses
radical and non-radical forms of high energy chemical species,
such as singlet oxygen, 1O2; superoxide anion, •O−

2 ; hydroxyl
radical, •OH; and hydrogen peroxide, H2O2 (Thannickal and
Fanburg, 2000; Finkel, 2001; Apel and Hirt, 2004). ROS can
be formed as byproducts of aerobic metabolism (D’Autréaux
and Toledano, 2007) and might act as regulatory molecules
in prokaryotic cells (Finkel, 2001; Cabiscol et al., 2010). Cells
have multiple pathways to limit ROS build-up (D’Autréaux and
Toledano, 2007), but loss of cellular function can occur when
this capacity is exhausted. As summarized in Figures 1D,F, metal
and metal-oxide NPs can induce ROS outside the cell, at the
cell membrane, and inside the cell (when NPs are internalized)
by direct interaction with biomolecules in the environmental
medium, the cell/outer membrane, and organic cytoplasmic
components, respectively, or via similar interactions of dissolved
metal ions with biomacromolecules (Park et al., 2009; Cabiscol
et al., 2010; Dutta et al., 2012); recent studies of metal-oxide NPs
have attempted to correlate conduction band-edge positioning
with respect to cellular redox potential and the resulting ability

to generate ROS (Zhang et al., 2012; Kaweeteerawat et al.,
2015).

Extracellular or cell-surface ROS can compromise cellular
integrity; membrane-leakage can be incurred via lipid
peroxidation or protein modifications (Dutta et al., 2012).
Intracellular ROS results in similar lipid peroxidation and
protein modification, as well as DNA damage (Sies and Menck,
1992; Cabiscol et al., 2010; Laha et al., 2014).

Effects of Dissolved Metals
Ion release from metallic NPs (Figure 1D), such as the release
of Ag+, Zn2+, or Cu2+ from nano-scale Ag, ZnO, or CuO,
respectively, is an important cause of the antimicrobiality of NPs
(Marambio-Jones and Hoek, 2010; Ma et al., 2013; Chambers
et al., 2014; Ivask et al., 2014). NP dissolution can occur outside
the cell, at the cell surface, or within the cell. Dissolved metals can
impact cellular functions, primarily via coordination and non-
homeostasis (Chang et al., 2012). Chelation of metal ions with
the chemical moieties of intracellular or extracellular ligands,
e.g., oxygen, phosphorus, nitrogen, and sulfur functional groups,
can alter biomolecule structure or function. For example, Ag+,
known to dissolve from silver nanoparticles (AgNPs; Chambers
et al., 2014), forms adducts with respiration enzymes, DNA,
and membrane-associated proteins via thiol groups, thereby
damaging cellular function (Feng et al., 2000; Matsumura et al.,
2003; Lok et al., 2006; Wigginton et al., 2010). Relatedly,
for the current study, we used live-dead staining with flow
cytometry to show loss of membrane integrity in Escherichia
coli with increased Ag+ exposure due to AgNP dissolution
(Supplementary Figure S1).

Physical Disruption of the Cell Membrane
As shown in Figure 1D, interaction of metal or metal-oxide
NPs with the cell surface can result in chemically and physically
induced toxicity (Pal et al., 2007; Okyay et al., 2015). The
interaction of NPs with the outer membrane/lipopolysaccharide
(LPS) for Gram-negative bacteria and the cell wall/membrane for
all bacteria is dependent on local chemistry (e.g., NP coating, LPS
composition, pH, and ionic strength). NPs are often coated to
stabilize them in aqueous suspension, which typically introduces
surface charge and inhibits nanoparticle dissolution/aggregation
(Ghosh Chaudhuri and Paria, 2012; Li et al., 2013); Gram-positive
and Gram-negative bacteria often are negatively charged in
solution (Stendahl et al., 1977; Caputy and Costerton, 1984). The
interaction between charged NPs and bacteria can be described
via Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory,
which includes attractive van der Waals and repulsive electrical
double layer forces. The surface functionality of the NPs can
induce transport of these particles to and through the cell
membrane via favorable electrostatic interaction (Feris et al.,
2010; Suresh et al., 2012). Once the NPs undergo an interfacial
journey to the inside of a cell, further chemical reactions can take
place.

Nanoparticle shape is important in the disruption of the
cell envelope. CuO nano-sheets and nano-spheres attached to
bacterial cells, but nano-sheets produced more surface damage in
Gram-positive bacteria and nano-spheres produced more surface

Frontiers in Microbiology | www.frontiersin.org 3 July 2015 | Volume 6 | Article 677

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Saleh et al. Challenges of nano-biofilm interaction

damage in Gram-negative bacteria (Laha et al., 2014). In addition
to acting as a localized source of ROS or dissolved metals outside
a cell, NPsmight cause direct physical stress to the cell membrane
[e.g., due to sharp edges of ZnO nanorods (Okyay et al., 2015)].
Such physical disruption is impacted by the presence of dissolved
organic matter, which coats NP surfaces and reduces the ability of
NPs to injure cells (Zhao et al., 2013).

Planktonic versus Biofilm Interaction
with NPs

Many studies have evaluated the interaction between NPs
and planktonic bacteria, but few have assessed NP–biofilm
interaction. Planktonic cells present a very different interaction
environment as compared to mature biofilms (Figures 1B,C).
Planktonic cells in a homogenous environment have similar gene
expression, metabolic activity, and EPS production (Mikkelsen
et al., 2007). Previous studies focusing on traditional antibiotic
challenges to bacteria found that the lower metabolic activity of
biofilm cells can reduce the effectiveness of certain antibiotics
(Walters et al., 2003). Some studies suggest that EPS plays
an important role in limiting antibiotic diffusion through the
biofilm (Stewart and Costerton, 2001), thus acting as a physical
barrier. The well-studied effects of antibiotics on bacteria provide
evidence of unique interactions with planktonic versus biofilm
cells. NPs as antimicrobial agents present additional complexities
due to their unique surface moieties, shape, size, and aggregation
propensity. The following section presents current knowledge
regarding the NP–biofilm interaction in light of the literature and
our laboratory data.

NP-Biofilm Interaction: State-of-Knowledge
Of the few studies that have evaluated the impact of NPs
on biofilms, some have shown that biofilms, as compared to
planktonic cells, have reduced susceptibility to NPs (Fabrega
et al., 2009; Choi et al., 2010). Choi et al. (2010) found that
biofilms were four times less susceptible to AgNP exposure than
were planktonic cells. Similarly, as compared to their planktonic
counterparts, biofilms of E. coli, P. aeruginosa, and Serratia
proteamaculans have been reported to have up to 25 times greater
tolerance to AgNPs stabilized with hydrolyzed casein peptides
(Radzig et al., 2013). Starch-coated NPs reduced P. aeruginosa
and Staphylococcus aureus biofilm growth but completely
inactivated planktonic cells at the same AgNP concentrations
(Mohanty et al., 2012). Nano-scale titania under UV irradiation
has been shown to produce ROS and substantially decrease the
growth and development of Pseudomonas fluorescens (Arroyo
et al., 2014) and Bacillus subtilis (Dhandapani et al., 2012)
biofilms. Dissolved ions from nano ZnO have been shown to
suppress biofilm formation of wastewater biofilms (Hou et al.,
2014) and of the opportunistic pathogens Rothia dentocariosa
and Rothia mucilaginosa (Khan et al., 2014).

Both planktonic and biofilm cells can produce EPS, which
has been shown to lower the diffusion rate of NPs (Peulen and
Wilkinson, 2011). However, EPS production is much greater
in biofilms as compared to planktonic cells (e.g., Hall-Stoodley

et al., 2004; Ruas-Madiedo and de los Reyes-Gavilán, 2005;
Kives et al., 2006). Although capsular EPS can provide some
protection to planktonic cells from NPs (Hessler et al., 2012),
its protective capacity is limited in a planktonic environment
due to its relatively small quantity as compared to EPS in
biofilms.

Results: Impact of AgNPs on Planktonic versus
Bofilm Bacteria
For the current study, we assessed the tolerance of E. coli and
P. aeruginosa biofilm and planktonic cells to mercaptosuccinic-
acid-capped AgNPs. AgNP synthesis and tolerance assays were
conducted as described previously (Chambers et al., 2014).
Biofilm and planktonic cells were grown simultaneously in a
spinning-disk reactor either in the absence of AgNPs or in the
presence of a subinhibitory concentration (15.6 µg/L) of AgNPs.
Approximately equal amounts of biofilm and planktonic cells
were retrieved and placed into microtiter plates; after a 5-h
exposure to 0-500 µg/L AgNPs, viable cells were enumerated via
plate counts.

Biofilm and planktonic cells without previous exposure to
AgNPs showed very similar tolerance to AgNPs upon exposure
(E. coli in Figure 2A and P. aeruginosa in Figure 2C); thus, at each
AgNP concentration, similar numbers of planktonic and biofilm
bacteria survived the AgNP exposure. This was contrary to results
from previous studies with traditional antimicrobial agents,
where biofilms generally show higher tolerance to traditional
antimicrobials than do planktonic cells (e.g., as for P. aeruginosa
exposed to tobramycin; Kirisits et al., 2005).

However, the tolerances of biofilm and planktonic cells to
AgNPs (for both E. coli and P. aeruginosa) diverged from one
another when the cells were originally grown in the presence
of a subinhibitory concentration of 15.6 µg/L AgNPs (see no
substantial loss of viability at 15.6 µg/L AgNPs in Figures 2A,C).
After having been grown previously in the presence of 15.6 µg/L
AgNPs, biofilm cells generally showed greater tolerance to the
subsequent AgNP exposure as compared to planktonic cells
(Figures 2B,D), which is in keeping with what would be expected
based on traditional antimicrobial studies. For planktonic and
biofilm E. coli cells, the previous exposure to AgNPs did not
provide an advantage to the cells when subsequently exposed
to higher AgNP concentrations in the tolerance assay (compare
Figures 2A,B); the previous exposure to the subinhibitory
concentration weakened E. coli’s tolerance to subsequent AgNP
exposures. On the other hand, for planktonic and biofilm
P. aeruginosa cells, the previous exposure to AgNPs generally
provided an advantage to the cells when subsequently exposed
to higher AgNP concentrations in the tolerance assay (compare
Figures 2C,D); thus, the previous exposure to the subinhibitory
concentration improved P. aeruginosa’s tolerance to subsequent
AgNP exposures. The differences between the E. coli and
P. aeruginosa results suggest that these organisms employ
different mechanisms to combat stress from AgNPs. These data
also suggest that long-term exposure to low concentrations
of NPs could render opportunistic human pathogens (e.g.,
P. aeruginosa) better able to withstand efforts to eradicate them
with NP-based antimicrobial agents. While these conclusions
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FIGURE 2 | Silver nanoparticle (AgNP) tolerance assays for planktonic
and biofilm cells of Escherichia coli and Pseudomonas aeruginosa.
(A) E. coli cells without previous exposure to AgNPs, (B) E. coli cells with
previous exposure to 15.6 µg/L AgNPs, (C) P. aeruginosa cells without
previous exposure to AgNPs, (D) P. aeruginosa cells with previous exposure

to 15.6 µg/L AgNPs. The detection limit (DL) for colony-forming units (CFU)
in each sample was calculated by dividing the minimum CFU detectable on
a plate (1 CFU) by the fraction of the total original sample volume plated for
the planktonic or biofilm assay. Plate counts falling below the DL are plotted
as one-half of the DL.

pertain to AgNPs, generalizing these results to other metal NPs
and bacteria requires investigation of bacterial stress response to
NPs at a fundamental (e.g., transcriptomic) level.

Future Challenges and Complexities in
NP–Biofilm Interaction

The challenges in understanding NP–biofilm interaction arise
from the inherent complexities of NPs and biofilms. NPs
not only introduce variability in surface moieties, electronic
structure, and chemical identity, but the interaction between
NPs (i.e., homoaggregation) and the interaction of NPs with
environmental surfaces (i.e., heteroaggregation) also complicate
our understanding. The underlying antimicrobial mechanisms
are not immune to these variations.

ROS production is correlated with conduction band position
with respect to cellular redox potential (Zhang et al., 2012);
however, nano-scale defects and metal doping will alter the band
structure and shift the conduction band position, likely further
complicating ROS-mediated toxicity. EPS on biofilms will likely
coat NP surfaces, thereby altering electronic structure and ROS
generation. Aggregation governs particle transport to planktonic
cells and can influence the kinetics of particle mass delivery
to bacteria. However, for biofilms, aggregation not only will
influence transport and mass delivery but also will influence

NP translocation through the biofilm. The absence of oxygen
limits NP surface oxidation (Xiu et al., 2011); thus, the low
oxygen microenvironments in deeper biofilm layers will likely
limit the rate of dissolution of metal NPs, thereby reducing their
antimicrobial activity.

Biofilm complexities will have a profound impact on NP–
NP interaction or NP translocation through the biofilm,
particularly due to EPS. Metallic NPs can deposit onto EPS
polysaccharides (Ikuma et al., 2014). Thus EPS could act as
a physical barrier to translocation of metal NPs through the
biofilm. Studies have shown a reduction in NP diffusion in
biofilms as compared to bulk solution (Habimana et al., 2011;
Peulen and Wilkinson, 2011). EPS also might participate in
ligand exchange, where the NP coating could be exchanged
with EPS molecules, resulting in either alteration of NP
aggregation or NP interfacial interaction with biofilm cells
(Figure 1E).

Furthermore, effects of the classical mechanisms discussed for
the interaction of NPs with planktonic cells might be exacerbated
or ameliorated in biofilms. For example, the release of ROS
and/or metal ions in biofilms likely is prolonged because of
the longer residence time and localized interaction of the NPs
with cells in the biofilm, as compared to their momentary
interaction with planktonic bacteria (Peulen and Wilkinson,
2011). If metal ion release occurs, chelation of dissolved
metals can occur with moieties in EPS (Kaplan et al., 1987;
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McLean et al., 1990); this would decrease the free metal ions
available to attack cellular proteins and DNA. On the other
hand, NP surfaces can undergo ligand exchange or passivation
(Figure 1E) via chemical reaction with the molecules or moieties
in biofilm EPS (Khan et al., 2011), which would decrease
the release of metal ions. Further, entrapment of NPs within
the biofilm might inhibit UV activation and associated ROS
production, thereby reducing the antimicrobial activity of the
NPs. Proteins and carbohydrate chains can react with ROS,
thereby mitigating the effects of metal and metal-oxide NPs
(Hessler et al., 2012).

Beyond the general advantage provided to biofilms by EPS,
biofilm cells often have significant transcriptional differences
as compared to planktonic cells (Sampathkumar et al., 2006;
Dötsch et al., 2012). Numerous stress response elements are
up-regulated in biofilms, which are closely associated with metal
stress response, DNA repair, and metabolic stress. These systems
might relieve stress caused by metal or metal-oxide NPs.

Systematic studies are necessary to understand NP interaction
with and translocation through biofilms as well as stress

modulation in biofilms exposed to NPs. Such studies need
to carefully control NP attributes (e.g., aggregation, surface
functionalities, electronic structure, size, and shape) and should
assess NP interaction with biofilms at different stages of
development. These controlled studies are needed to carefully
decipher the mechanisms of interaction of NPs in the complex
biofilm environment.
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