101 research outputs found

    A Product Integration type Method for solving Nonlinear Integral Equations in L

    Full text link
    This paper deals with nonlinear Fredholm integral equations of the second kind. We study the case of a weakly singular kernel and we set the problem in the space L 1 ([a, b], C). As numerical method, we extend the product integration scheme from C 0 ([a, b], C) to L 1 ([a, b], C)

    A note on perturbed fixed slope iterations

    Get PDF
    AbstractAn approximation to the exact derivative leads to perturbed fixed slope iterations in the context of Inexact Newton methods. We prove an a posteriori convergence theorem for such an algorithm, and show an application to nonlinear differential boundary value problems. The abstract setting is a complex Banach space

    A note on spectral approximation of linear operations

    Get PDF
    AbstractThis work deals on sufficient conditions for the spectral convergence of a sequence of linear operators. The general context is a complex separable Banach space and the pointwise limit of the sequence is a continuous linear operator which is not supposed to be compact. By spectral convergence is meant the self-range-uniform convergence of the approximate spectral projections. This implies the gap convergence of the approximate maximal invariant subspaces to those of the limit operator corresponding to a nonzero isolated eigenvalue (or a subset of close nonzero isolated eigenvalues) with finite algebraic multiplicity. Neither the exact nor the approximate eigenvalues are supposed to be semisimple

    A Jacobi-Davidson type method with a correction equation tailored for integral operators

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11075-012-9656-9We propose two iterative numerical methods for eigenvalue computations of large dimensional problems arising from finite approximations of integral operators, and describe their parallel implementation. A matrix representation of the problem on a space of moderate dimension, defined from an infinite dimensional one, is computed along with its eigenpairs. These are taken as initial approximations and iteratively refined, by means of a correction equation based on the reduced resolvent operator and performed on the moderate size space, to enhance their quality. Each refinement step requires the prolongation of the correction equation solution back to a higher dimensional space, defined from the infinite dimensional one. This approach is particularly adapted for the computation of eigenpair approximations of integral operators, where prolongation and restriction matrices can be easily built making a bridge between coarser and finer discretizations. We propose two methods that apply a Jacobi–Davidson like correction: Multipower Defect-Correction (MPDC), which uses a single-vector scheme, if the eigenvalues to refine are simple, and Rayleigh–Ritz Defect-Correction (RRDC), which is based on a projection onto an expanding subspace. Their main advantage lies in the fact that the correction equation is performed on a smaller space while for general solvers it is done on the higher dimensional one. We discuss implementation and parallelization details, using the PETSc and SLEPc packages. Also, numerical results on an astrophysics application, whose mathematical model involves a weakly singular integral operator, are presented.This work was partially supported by European Regional Development Fund through COMPETE, FCT-Fundacao para a Ciencia e a Tecnologia through CMUP-Centro de Matematica da Universidade do Porto and Spanish Ministerio de Ciencia e Innovacion under projects TIN2009-07519 and AIC10-D-000600.Vasconcelos, PB.; D'almeida, FD.; Román Moltó, JE. (2013). A Jacobi-Davidson type method with a correction equation tailored for integral operators. Numerical Algorithms. 64(1):85-103. doi:10.1007/s11075-012-9656-9S85103641Absil, P.A., Mahony, R., Sepulchre, R., Dooren, P.V.: A Grassmann–Rayleigh quotient iteration for computing invariant subspaces. SIAM Rev. 44(1), 57–73 (2002)Ahues, M., Largillier, A., Limaye, B.V.: Spectral Computations with Bounded Operators. Chapman and Hall, Boca Raton (2001)Ahues, M., d’Almeida, F.D., Largillier, A., Titaud, O., Vasconcelos, P.: An L 1 refined projection approximate solution of the radiation transfer equation in stellar atmospheres. J. Comput. Appl. Math. 140(1–2), 13–26 (2002)Ahues, M., d’Almeida, F.D., Largillier, A., Vasconcelos, P.B.: Defect correction for spectral computations for a singular integral operator. Commun. Pure Appl. Anal. 5(2), 241–250 (2006)Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied Mathematics, Philadelphia (2000)Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 3.1, Argonne National Laboratory (2010)Chatelin, F.: Spectral Approximation of Linear Operators. SIAM, Philadelphia (2011)d’Almeida, F.D., Vasconcelos, P.B.: Convergence of multipower defect correction for spectral computations of integral operators. Appl. Math. Comput. 219(4), 1601–1606 (2012)Falgout, R.D., Yang, U.M.: Hypre: A library of high performance preconditioners. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) Computational Science - ICCS 2002, International Conference, Amsterdam, The Netherlands, April 21–24, 2002. Proceedings, Part III, Lecture Notes in Computer Science, vol. 2331, pp. 632–641. Springer (2002)Henson, V.E., Yang, U.M.: BoomerAMG: A parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41(1), 155–177 (2002)Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)Hernandez, V., Roman, J.E., Tomas, A., Vidal, V.: SLEPc Users Manual. Tech. Rep. DSIC-II/24/02 - Revision 3.1, D. Sistemas Informáticos y Computación, Universidad Politécnica de Valencia (2010)Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)Simoncini, V., Eldén, L.: Inexact Rayleigh quotient-type methods for eigenvalue computations. BIT 42(1), 159–182 (2002)Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM Rev. 42(2), 267–293 (2000)Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992)Stewart, G.W.: A Krylov–Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23(3), 601–614 (2001

    Eigenvalue computations in the context of data-sparse approximations of integral operators

    Get PDF
    In this work, we consider the numerical solution of a large eigenvalue problem resulting from a finite rank discretization of an integral operator. We are interested in computing a few eigenpairs, with an iterative method, so a matrix representation that allows for fast matrix-vector products is required. Hierarchical matrices are appropriate for this setting, and also provide cheap LU decompositions required in the spectral transformation technique. We illustrate the use of freely available software tools to address the problem, in particular SLEPc for the eigensolvers and HLib for the construction of H-matrices. The numerical tests are performed using an astrophysics application. Results show the benefits of the data-sparse representation compared to standard storage schemes, in terms of computational cost as well as memory requirements.This work was partially supported by the Spanish Ministerio de Ciencia e Innovacion under projects TIN2009-07519, TIN2012-32846 and AIC10-D-000600 and by Fundacao para a Ciencia e a Tecnologia - FCT under project FCT/MICINN proc 441.00.Román Moltó, JE.; Vasconcelos, PB.; Nunes, AL. (2013). Eigenvalue computations in the context of data-sparse approximations of integral operators. Journal of Computational and Applied Mathematics. 237(1):171-181. doi:10.1016/j.cam.2012.07.021S171181237

    Echec imminent : à  la recherche d'un profil

    Get PDF
    Devant le constat, tant en Belgique qu'en France, des faibles taux de réussite en premiêre année universi­taire, nous avons cherché à  dégager le profil des étudiants qui risquent de se trouver en situation d'échec en fin d'année. Ainsi ils pourront bénéficier d'actions ciblées menées par l'université en vue d'augmenter leur probabilité de réussite et ce avant les premiêres évaluations. Un questionnaire a été élaboré et distribué en début d'année, et ce durant deux années, auprês d'étudiants de la Faculté de Sciences et Techniques d'une université française, d'un IUT[1] de la même université et de la Faculté des Sciences d'une université belge. Chaque étudiant a pu être décrit au moyen de 375 varia­bles. Nous présentons dans cet article l'analyse des résultats obtenus.   [1] IUT : Institut Universitaire Technologique

    La evaluación de los aprendizajes y su incidencia en la formación policial

    Get PDF
    La evaluación es un proceso integral que permite valorar los resultados obtenidos en términos de los objetivos propuestos, acorde con los recursos utilizados y las condiciones existentes, es esencial para la calidad educativa, ya que proporciona información que permite tomar decisiones para los procesos de enseñanza-aprendizaje que no son tan claros sin su aplicación efectiva. El uso pedagógico de los resultados orienta el trabajo de las instituciones, los docentes y de los estudiantes. De ahí la importancia de ver la evaluación como una herramienta para potenciar los aprendizajes y los procesos que ocurren en el aula, dentro del ciclo de calidad que busca fortalecer las instituciones educativas y conjuga estándares básicos de competencia, procesos de evaluación y diseño e implementación de planes de mejoramiento institucional

    Approximation spectrale de matrices issues d opérateurs discrétisés

    Get PDF
    Cette thèse considère la solution numérique d'un problème aux valeurs propres de grandes dimensions, dans lequel l'opérateur est dérivé d'un problème de transfert radiatif. Ainsi, cette thèse étudie l'utilisation de matrices hiérarchiques, une représentation efficace de tableaux, très intéressante pour une utilisation avec des problèmes de grandes dimensions. Les matrices sont des représentations hiérarchiques de structures de données efficaces pour les matrices denses, l'idée de base étant la division d'une matrice en une hiérarchie de blocs et l approximation de certains blocs par une matrice de petite caractéristique. Son utilisation permet de diminuer la mémoire nécessaire tout en réduisant les coûts informatiques. L'application de l'utilisation de matrices hiérarchique est analysée dans le contexte de la solution numérique d'un problème aux valeurs propres de grandes dimensions résultant de la discrétisation d'un opérateur intégral. L'opérateur est de convolution et est défini par la première fonction exponentielle intégrale, donc faiblement singulière. Pour le calcul informatique, nous avons accès à HLIB (Hierarchical matrices LIBrary) qui fournit des routines pour la construction de la structure hiérarchique des matrices et des algorithmes pour les opérations approximative avec ces matrices. Nous incorporons certaines routines comme la multiplication matrice-vecteur ou la decomposition LU, en SLEPc (Hierarchical matrices LIBrary) pour explorer les algorithmes existants afin de résoudre les problèmes de valeur propre. Nous développons aussi des expressions analytiques pour l'approximation des noyaux dégénérés utilisés dans la thèse et déduire ainsi les limites supérieures d'erreur pour ces approximations. Les résultats numériques obtenus avec d'autres techniques pour résoudre le problème en question sont utilisés pour la comparaison avec ceux obtenus avec la nouvelle technique, illustrant l'efficacité de ce dernierIn this thesis, we consider the numerical solution of a large eigenvalue problem in which the integral operator comes from a radiative transfer problem. It is considered the use of hierarchical matrices, an efficient data-sparse representation of matrices, especially useful for large dimensional problems. It consists on low-rank subblocks leading to low memory requirements as well as cheap computational costs. We discuss the use of the hierarchical matrix technique in the numerical solution of a large scale eigenvalue problem arising from a finite rank discretization of an integral operator. The operator is of convolution type, it is defined through the first exponential-integral function and hence it is weakly singular. We access HLIB (Hierarchical matrices LIBrary) that provides, among others, routines for the construction of hierarchical matrix structures and arithmetic algorithms to perform approximative matrix operations. Moreover, it is incorporated the matrix-vector multiply routines from HLIB, as well as LU factorization for preconditioning, into SLEPc (Scalable Library for Eigenvalue Problem Computations) in order to exploit the available algorithms to solve eigenvalue problems. It is also developed analytical expressions for the approximate degenerate kernels and deducted error upper bounds for these approximations. The numerical results obtained with other approaches to solve the problem are used to compare with the ones obtained with this technique, illustrating the efficiency of the techniques developed and implemented in this workST ETIENNE-Bib. électronique (422189901) / SudocSudocFranceF
    • …
    corecore