View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by Elsevier - Publisher Connector

R\ Appl. Math. Lett. Vol. 7, No. 2, pp. 63-66, 1994
w Pergamon Copyright(©1994 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0893-9659/94 $6.00 + 0.00

“n".

1Vl Ul

(2 ': LaY
ai ..L_LPPJ. UAllliiQl

4+
¥ U
Linear Operations

M. AHUES AND F. HOCINE

T Aing dA’Analuvce Niutmarian de T von Qoint NHianna
mgu Ayc U AlalysSt INullier 1quc ae uyoir ua-uu, LULICTTLC

Unité Associée au C.N.R.S. N° 740
23 Rue Dr. Paul Michelon, 42023 Saint-Etienne, France

(Received August 1993; accepted September 1993)

Abstract—This work deals on sufficient conditions for the spectral convergence of a sequence of
linear operators. The general context is a complex separable Banach space and the pointwise limit
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convergence is meant the self-range-uniform convergence of the approximate spectral projections.
This implies the gap convergence of the approximate maximal invariant subspaces to those of the
limit operator corresponding to a nonzero isolated eigenvalue (or a subset of close nonzero isolated
eigenvalues) with finite algebraic multiplicity. Neither the exact nor the approximate eigenvalues are
supposed to be semisimple.
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1. INTRODUCTION

Under which conditions on a sequence T, f lznear operators are the mazimal invariant sub-

snaces nf a continuous linear operator T well n'rmrnfrv'mnfpd by hvse f and in what sen
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does this approzimation take place?

These questions are far from being elementary since, commonly in practice, to an eigenvalue
X of T there is associated a subset A, = {A1n,A2n,. .-, Ar, n} Of 7 different eigenvalues of T,
which may be interpreted as the approximations of A produced by T,,. To each A; ,, is associated
a maximal invariant subspace M;, of T,. If M denotes the maximal invariant subspace of T’
corresponding to A, we should expect M,, = @;gl M, to be an approximation to M. We
would like, in particular, to have dim M,= dim M for n large enough. This means that the
sum of the r,, algebraic multiplicities corresponding to the eigenvalues in A,, equals the algebraic

multiplicity of the exact eigenvalue . At the same time, we expect the set |J A, to have A in
nGN
its adherence. We would also like to obtain error bounds for M,, as an approximation to M and
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The natural fr. amework of our research is a complex separable Ba nach space (B,|-|). Let M
be a finite-dimensional linear subspace of B, N a closed linear subspace of B, and b a vector in
B. We recall the following definitions (see [1]) dist(b, N —mf{]b —-v|: ve N} 6 MN)=
sup{dist(u,N) : u € M, |ul = 1}, and v(M,N) = max{6(M, N),8(N, M)}, called the gap
between M and N.

We shall consider an operator T' € L(B), the Banach algebra of bounded linear operators in B.
As an approximation to T we take a sequence T}, of linear operators defined in B. In order to deal
with a more general situation than a single eigenvalue, A will denote either a nonzero isolated
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eigenvalue of T with finite algebraic multiplicity m or a finite set of nonzero isolated eigenvalues
of T with finite total algebraic multiplicity m. We recall that if I’ is any closed Jordan curve
lying in the resolvent set re(T’) of T isolating A from 0 and from the rest of the spectrum sp(7)
of T, and if I denotes the identity in B, then the integral P = —3L Jo(T — 2I)~! dz defines
the spectral projection of T associated to A. For each z € re(T), R(z) = (T — 2I)~! € L(B) is
the resolvent operator of T at z. It is natural to conceive P, = _é‘:‘ri fF(Tn —2I)7! dz as an
approximation to P. But then, at least two questions should be answered before developing this
idea, namely:

(a) Are the operators P, well defined projections for n large enough? The answer is yes if we
demonstrate the existence in £(B) of the approximate resolvents R, (z) = (T, — zI)7!, at
each z € I, for n large enough.

(b) Is the image space P, B equal to M,,? If P, is well defined, then it equals the sum of all
the spectral projections of 7, corresponding to the eigenvalues of T}, lying in the open
bounded subset of C whose boundary is I'. Hence, the image space of P, will be equal
to M, if the set A,, of approximations to A is defined to be the subset of eigenvalues of T,
isolated by I'.

2. ABOUT STRONGLY STABLE CONVERGENCE

We recall the notion of strongly stable convergence.
T, is a strongly stable approzimation to T at X iff (see [2])

(SS1) T, is pointwise convergent to 7.

(SS2) Given any closed Jordan curve T lying in re(T'), isolating A from O and from the rest of
the spectrum of T, given any z € I' the approximate resolvents R, (z) belong to £(B) and
are bounded with respect to n, for n large enough.

(SS3) Associated with the curve I', the approximate projections P, are such that, for n large
enough, dim P, B = m.

The following results are easy to prove:

PROPERTY 2.1. (SS1) and (5S2) imply that for z € T, R,(z) is pointwise convergent to R(z)
and, for n large enough, uniformly bounded in z for z € T, and that P, is pointwise convergent
to P.
We shall be concerned with the following notions of convergence:
A, € L(B) is a collectively compact approzimation to A € L(B) iff (see (3])
(CC1) A, is pointwise convergent to A.
(CC2) There exists ng € N such that {An,b: b€ B, |b| <1, n > ng} is a relatively compact set.
A, € L(B) is a self-range-uniform approzimation to A € L(B) iff
(SRU1) A, is pointwise convergent to A.
(SRU2) (A, — A)A, converges in norm to 0.
PROPERTY 2.2. Suppose the pointwise convergence of P, to P. Then the following are equiva-
lent:
(i) (SS3).
(ii) P, is a collectively compact approximation to P.
(iii) P, is a self-range-uniform approximation to P.
(iv) The gap between P, B and PB tends to 0 as n tends to infinity.
In the light of Property 2.2, we are led to propose the following notion of convergence, specially

concerned with spectral approximation:
T, is a spectral approzimation to T at A if given any closed Jordan curve I’ isolating A from
0 and from the rest of sp(7'), the sequence P, is self-range-uniform convergent to the spectral

projection P.
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PROPERTY 2.3. IfT, is a strongly stable approximation to T at A, then T, is a spectral approx-
imation to T at A. -

PROPERTY 2.4. The strongly stable convergence of T,, to T at A implies lim ~v(M,, M) = 0.
n—oo

3. OUR RESULTS

Here, p denotes the spectral radius.

THEOREM 3.1. Under the hypotheses
(H1) T, is pointwise convergent to T,
(H2) either lim,_, o [(Tn — T)Ty| = 0 or limp oo |[Tp(T — Ty)| = 0,
(H3) limy o p(T, = T) =0,
the sequence of linear operators T,, is a spectral approximation to T at any subset A of nonzero
isolated eigenvalues of T with finite total algebraic multiplicity.
PROOF. (H1) corresponds to (SS1). To prove (SS2) we consider the following two identities:

(T, — 2I) (1 -~ T,,)) = (T - 21) (1 ~ ZRETAT - Tn)>
(3.1)
(1 - %(T _ Tn)> (T — 2I) = (T — 2I) (I - %R(z)(T - Tn)Tn> .

They prove that under (H2) and (H3), T,, — 2I has a bounded inverse R, (z), for n large enough.
We remark that (H1) implies that the sequence T), is bounded, by the Banach-Steinhaus theorem.
Hence, depending on which hypothesis in (H2) takes place, one of the following two expressions
for R, (z), obtained from (3.1), shows that it is uniformly bounded in n and z, for n large enough
and z €T,

1 -1
(r-1@-m) (1-trena-1)  re)
Rn(2) = ) -1 ) (3:2)
(I - ;R(z)(T - Tn)Tn) R(z) (I - ;(T - Tn)> .
Let I" be a closed Jordan curve isolating A from 0 and from the rest of the spectrum of T'. Let A,
be the subset of the spectrum of T, in the bounded open subset of C with boundary I". The fact
that P,, Ty, and R,(z) commute, imply the bounds
|Pa(Pn = P)| < c|Po(Tn = T)|, (P — Po)Pa| < (T —Tn)Pal,

where ¢ is a generic positive constant. On the other hand, the identity R, (2) = 1 (Rn(2)T, — I) =
1 (T R.(2) — I) and the fact that .. 4 = 0 imply the identities

1 1
Pu(Tn = T) = 5 | SRu(@)Ta(Ti = T) d,
(T =T P = —— [ 2T - T TuRA(2) d
n/in =T Lz n)infinl2) a2.

Since p(Pr(P ~ P)) = p((P — Pu)Py) < min{|Po(P — Py}, (P — B,)Pa|}, we conclude that
lim,, o0 p{ Pp(P, — P)) = 0, and hence, for n large enough, dim M,, < dim M. But since P is
compact, (P, — P)P converges in norm to 0. This implies that dim M,, > dim M. Hence, (SS3)
follows and we apply Property 2.3. ]

COROLLARY 3.2.

(i) If T is compact and T,, a self-range-uniform approximation to T, then T, is a spectral
approximation to T at each nonzero isolated eigenvalue of finite algebraic multiplicity.
(it) If Ty, is compact, the conclusions of Theorem 3.1 remain true without (H3).
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THEOREM 3.3. Let A and ), be the arithmetic means (counting algebraic multiplicities) of the
eigenvalues in A and A, respectively. Then |A, — | < c|(Tn Py — TP)P|, where c is a positive
constant.
PRrOOF. For n large enough, given a uniformly bounded basis ®,, of M, there exists a unique
basis ®™ of M such that P, ®™ = &,. Let 8, and 6™ be the m x m complex matrices
representing the restriction of 7, to M,, in the basis ®, and that of T to M in the basis &™),
respectively. We define the operator K, = Po(TnPn, — TP)P (P, |n)"! € L(M,). An easy
computation shows that 6, — (™ represents K,, in the basis ®, of M,,.

Hence, | A, — A = | tr(8, — 8™)| < p(6n —0™) < ¢|(T P, — TP)P|, since P, and (Py |37) "
are uniformly bounded in n for n large enough. ]
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