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Abstract-This work deals on sufficient conditions for the spectral convergence of a sequence of 
linear operators. The general context is a complex separable Banach space and the pointwise limit 
of the sequence is a continuous linear operator which is not supposed to be compact. By spectral 
convergence is meant the self-range-uniform convergence of the approximate spectral projections. 
This implies the gap convergence of the approximate maximal invariant subspaces to those of the 
limit operator corresponding to a nonzero isolated eigenvalue (or a subset of close nonsero isolated 
eigenvalues) with finite algebraic multiplicity. Neither the exact nor the approximate eigenvalues are 
supposed to be semisimple. 
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1. INTRODUCTION 

The basic problems to be studied in this chapter are: 

Under which conditions on a sequence T, of linear operators are the mtimal invariant sub- 
spaces of a continuous linear operator T well approximated by those of T,, and in what sense 

does this approximation take place? 
These questions are far from being elementary since, commonly in practice, to an eigenvalue 

X of T there is associated a subset X, = {XI,~,X~,~, . . . , A,,,,, } of r, different eigenvalues of T, 

which may be interpreted as the approximations of X produced by T,. To each Xj,,, is associated 

a maximal invariant subspace Mj,n of T,. If M denotes the maximal invariant subspace of T 

corresponding to X, we should expect M, = @e,‘=, Mj,n to be an approximation to M. We 

would like, in particular, to have dim M,= dim M for n large enough. This means that the 

sum of the rn algebraic multiplicities corresponding to the eigenvalues in X, equals the algebraic 

multiplicity of the exact eigenvalue X. At the same time, we expect the set U X, to have X in 

its adherence. We would also like to obtain error bounds for Mn as an approximation to M and 

for each Xj,, (or some function of the set X,) as an approximation to X. 

The natural framework of our research is a complex separable Banach space (B, 1 . I). Let M 
be a finite-dimensional linear subspace of B, N a closed linear subspace of B, and b a vector in 

B. We recall the following definitions (see [l]): dist(b, N) = inf{ 16 - WI : w E N}, S(M, N) = 
sup{dist(u, N) : u E M, 11~1 = l}, and y(M, N) = max{S(M, N),S(N, M)}, called the gap 

between M and N. 
We shall consider an operator T E L(B), the Banach algebra of bounded linear operators in B. 

As an approximation to T we take a sequence T, of linear operators defined in B. In order to deal 

with a more general situation than a single eigenvalue, X will denote either a nonzero isolated 
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eigenvalue of T with finite algebraic multiplicity m or a finite set of nonzero isolated eigenvalues 

of T with finite total algebraic multiplicity m. We recall that if I’ is any closed Jordan curve 

lying in the resolvent set re(T) of T isolating /\ from 0 and from the rest of the spectrum sp(T) 

of T, and if I denotes the identity in B, then the integral P = -& J,(T - zI)-l dz defines 

the spectral projection of T associated to X. For each z E re(T), R(z) = (T - .zl)-l E L(B) is 

the resolvent operator of T at Z. It is natural to conceive P, = -& &(Tn - zI)-l d,z as an 

approximation to P. But then, at least two questions should be answered before developing this 

idea, namely: 

(a) Are the operators P, well defined projections for n large enough? The answer is yes if we 

demonstrate the existence in C(B) of the approximate resolvents k(z) = (T, - zI)-l, at 

each z E l?, for n large enough. 

(b) Is the image space P,B equal to M,,? If P, is well defined, then it equals the sum of all 

the spectral projections of T, corresponding to the eigenvalues of T, lying in the open 

bounded subset of C whose boundary is r. Hence, the image space of P, will be equal 

to M, if the set X, of approximations to X is defined to be the subset of eigenvalues of T, 

isolated by I?. 

2. ABOUT STRONGLY STABLE CONVERGENCE 

We recall the notion of strongly stable convergence. 

T, is a strongly stable approkmation to T at X iff (see [2]) 

(SSl) T, is pointwise convergent to T. 

(SS2) Given any closed Jordan curve l? lying in re(T), isolating X from 0 and from the rest of 

the spectrum of T, given any z E l? the approximate resolvents &(z) belong to C(B) and 

are bounded with respect to n, for n large enough. 

(SS3) Associated with the curve l?, the approximate projections P, are such that, for n large 
enough, dim P,B = m. 

The following results are easy to prove: 

PROPERTY 2.1. (5%) and (SS2) imply that for z E r, R,(z) is pointwise convergent to R(z) 

and, for n large enough, uniformly bounded in z for z E r, and that P, is pointwise convergent 
to P. 

We shall be concerned with the following notions of convergence: 

A, E L(B) is a colZectively compact upprodmution to A E C(B) iff (see [3]) 

(Ccl) A, is pointwise convergent to A. 

(CC2) There exists no E N such that {A,b : b E B, lb\ 5 1, n > no} is a relatively compact set. 

A, E C(B) is a self-range-uniform upprotimution to A E C(B) iff 

(SRUl) A, is pointwise convergent to A. 

(SRU2) (A, - A)A, converges in norm to 0. 

PROPERTY 2.2. Suppose the pointwise convergence of P, to P. Then the following are equiva- 

lent: 

(i) (SS3). 
(ii) P, is a collectively compact approximation to P. 

(iii) P, is a self-range-uniform approximation to P. 
(iv) The gap between P,B and PB tends to 0 as n tends to infinity. 

In the light of Property 2.2, we are led to propose the following notion of convergence, specially 

concerned with spectral approximation: 
T, is a spectral approximation to T at X if given any closed Jordan curve r isolating X from 

0 and from the rest of sp(T), the sequence P, is self-range-uniform convergent to the spectral 

projection P. 
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PROPERTY 2.3. If T, is a strongly stable approximation to T at A, then T,, is a spectral approx- 

imation to T at A. . 

PROPERTY 2.4. The strongly stable convergence of T, to T at X implies &-nr y(M,, M) = 0. 

3. OUR RESULTS 

Here, p denotes the spectral radius. 

THEOREM 3.1. Under the hypotheses 

(Hl) T, is pointwise convergent to T, 

(H2) either lim,,, I(Tn - T)T,I = 0 or lim,,, IT,(T - Tn)l = 0, 

(H3) lim,,, p(T, - T) = 0, 

the sequence of linear operators T, is a spectral approximation to T at any subset X of nonzero 

isofated eigenvafues of T with finite total algebraic muJtipJicity. 

PROOF. (Hl) corresponds to (SSl). To prove ($82) we consider the following two identities: 

(T, - ~1) 
( 

I - ;(T - T,)) = (T - zI) (I - ;R(*)T,(T -T,)) 

(3.1) 

( 
I - ;(T - T,) 

> 
(T, - zI) = (T - zI) 

( 
I - ;R(z)(T - Tn)Tn 

> 
, 

They prove that under (H2) and (H3), T,, - zI has a bounded inverse Rn(.z), for n large enough. 

We remark that (Hl) implies that the sequence T, is bounded, by the Banach-Steinhaus theorem. 

Hence, depending on which hypothesis in (H2) takes place, one of the following two expressions 

for R,(z), obtained from (3.1), shows that it is uniformly bounded in n and t, for n large enough 

and z E r, 

I- 

R,(z) = 

I- (3’2) 

Let r be a closed Jordan curve isolating A from 0 and from the rest of the spectrum of T. Let X, 

be the subset of the spectrum of T, in the bounded open subset of Cc with boundary I?. The fact 

that P,, T,, and R,(z) commute, imply the bounds 

IP,(P, - P)I L clPn(Tn - T)I, I(P - PnPnI I 4P - TnPnI, 
where c is a generic positive constant. On the other hand, the identity R,(z) = i (R,(z)T, - I) = 
f (T,Rn(z) - I) and the fact that 1, $ = 0 imply the identities 

P,(Tn -T) = -& 
s 
ri~,(r)Tn(Tn -T) dz, 

(T-T,)P, = -&&T-Tn)TnR&) dz. 

Since p(P,(P - P,)) = p((P - Pn)Pn) I min{(P,(P - P,)(, ((P - P,)P,/}, we conclude that 

limn+ooP(Pn(Pn - P)) = 0, and hence, for n large enough, dim M, 5 dim M. But since P is 
compact, (P, - P)P converges in norm to 0. This implies that dim M, 1 dim M. Hence, (SS3) 
follows and we apply Property 2.3. I 

COROLLARY 3.2. 

(i) If T is compact and T, a self-range-uniform approximation to T, then T,, is a spectral 

approximation to T at each nonzero isolated eigenvalue of finite algebraic multiplicity. 
(ii) If T, is compact, the conclusions of Theorem 3.1 remain true without (H3). 
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THEOREM 3.3. Let 1 and in be the arithmetic means (counting algebraic multiplicities) of the 

eigenvalues in X and X,, respectively. Then I& - iI 5 cl(TnPn - TP)PI, where c is a positive 

constant. 

PROOF. For n large enough, given a uniformly bounded basis Q’n of M,, there exists a unique 

basis @cn) of M such that P, dn) = an. Let 8, and O(n) be the m x m complex matrices 

representing the restriction of T, to M, in the basis a,, and that of T to M in the basis @cn), 

respectively. We define the operator K,, = P,(T,P, - TP)P(P, l~)-l E L(M,). An easy 
computation shows that 0, - 0(n) represents K,, in the basis @‘n of M,. 

Hence, Ii, - 11 = AI tr(8, - OCn))l 5 ~(0, - @)) I cj(T,P, - TP)PI, since P, and (P, lM)-l 
are uniformly bounded in n for n large enough. I 
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