1,438 research outputs found

    Maximal Green Sequences of Exceptional Finite Mutation Type Quivers

    Get PDF
    Maximal green sequences are particular sequences of mutations of quivers which were introduced by Keller in the context of quantum dilogarithm identities and independently by Cecotti-C\'ordova-Vafa in the context of supersymmetric gauge theory. The existence of maximal green sequences for exceptional finite mutation type quivers has been shown by Alim-Cecotti-C\'ordova-Espahbodi-Rastogi-Vafa except for the quiver X7X_7. In this paper we show that the quiver X7X_7 does not have any maximal green sequences. We also generalize the idea of the proof to give sufficient conditions for the non-existence of maximal green sequences for an arbitrary quiver

    Trade finance in crisis : should developing countries establish export credit agencies ?

    Get PDF
    New data on export insurance and guarantees suggest that publicly backed export credit agencies have played a role to prevent a complete drying up of trade finance markets during the current financial crisis. Given that export credit agencies are mainly located in advanced and emerging economies, the question arises whether developing countries that are not equipped with these agencies should establish their own agencies to support exporting firms and avoid trade finance shortages in times of crisis. This paper highlights a number of issues requiring attention in the decision whether to establish such specialized financial institutions. It concludes that developing countries should consider export credit agencies only when certain pre-requirements in terms of financial capacity, institutional capability, and governance are met.Debt Markets,Emerging Markets,Access to Finance,Banks&Banking Reform,Financial Intermediation

    High sensitivity and multifunctional micro-Hall sensors fabricated using InAlSb/InAsSb/InAlSb heterostructures

    Get PDF
    Further diversification of Hall sensor technology requires development of materials with high electron mobility and an ultrathin conducting layer very close to the material's surface. Here, we describe the magnetoresistive properties of micro-Hall devices fabricated using InAlSb/InAsSb/InAlSb heterostructures where electrical conduction was confined to a 30 nm-InAsSb two-dimensional electron gas layer. The 300 K electron mobility and sheet carrier concentration were 36 500 cm(2) V-1 s(-1) and 2.5 x 10(11) cm(-2), respectively. The maximum current-related sensitivity was 2 750 V A(-1) T-1, which was about an order of magnitude greater than AlGaAs/InGaAs pseudomorphic heterostructures devices. Photolithography was used to fabricate 1 mu m x 1 mu m Hall probes, which were installed into a scanning Hall probe microscope and used to image the surface of a hard disk

    Effect of Ag2O addition on the intergranular properties of the superconducting Bi–(Pb)–Sr–Ca–Cu–O system

    Get PDF
    The effect of Ag2O addition on the Bi–(Pb)–Sr–Ca–Cu–O system has been investigated in terms of ac susceptibility, phase evolution, critical current density and critical temperature. It was found that as the amount of Ag2O addition increases, the intergranular critical current density decreases in our samples (Bi1.84Pb0.34Sr1.91Ca2.03Cu3.06O10) fabricated by ammonium nitrate technique. The analysis for comparison is based on the suppression degree of the diamagnetic behaviour with respect to fields, rapid or slow shift of the summit in χ'(T) to lower temperature with increasing field amplitude and the sharpness of the transition of χ'(T) for intergranular component for the same field amplitude. We also qualitatively discuss experimental results in the framework of the critical state model. The room temperature XRD diagram indicates the presence of large amount of high-Tc (2223) phase. The percentage of Bi-2223 phase in the phase mixture was estimated from the intensities of high-Tc (2223) and low-Tc (2212) phase peaks as 78% for the pure BSCCO sample. Among the Ag2O-added BSCCO samples studied, the one in which 5 wt%Ag2O was added shows the highest rate of Bi-2223 formation as 92%. The SEM analysis reveals some morphological changes induced by silver addition

    Machine Learning for Metasurfaces Design and Their Applications

    Full text link
    Metasurfaces (MTSs) are increasingly emerging as enabling technologies to meet the demands for multi-functional, small form-factor, efficient, reconfigurable, tunable, and low-cost radio-frequency (RF) components because of their ability to manipulate waves in a sub-wavelength thickness through modified boundary conditions. They enable the design of reconfigurable intelligent surfaces (RISs) for adaptable wireless channels and smart radio environments, wherein the inherently stochastic nature of the wireless environment is transformed into a programmable propagation channel. In particular, space-limited RF applications, such as communications and radar, that have strict radiation requirements are currently being investigated for potential RIS deployment. The RIS comprises sub-wavelength units or meta-atoms, which are independently controlled and whose geometry and material determine the spectral response of the RIS. Conventionally, designing RIS to yield the desired EM response requires trial and error by iteratively investigating a large possibility of various geometries and materials through thousands of full-wave EM simulations. In this context, machine/deep learning (ML/DL) techniques are proving critical in reducing the computational cost and time of RIS inverse design. Instead of explicitly solving Maxwell's equations, DL models learn physics-based relationships through supervised training data. The ML/DL techniques also aid in RIS deployment for numerous wireless applications, which requires dealing with multiple channel links between the base station (BS) and the users. As a result, the BS and RIS beamformers require a joint design, wherein the RIS elements must be rapidly reconfigured. This chapter provides a synopsis of DL techniques for both inverse RIS design and RIS-assisted wireless systems.Comment: Book chapter, 70 pages, 12 figures, 2 tables. arXiv admin note: substantial text overlap with arXiv:2101.09131, arXiv:2009.0254

    Photocurrent Enhancement by Spontaneous Formation of a p n Junction in Calcium Doped Bismuth Vanadate Photoelectrodes

    Get PDF
    The application of bismuth vanadate BiVO4 photoelectrodes for solar water splitting is hindered by the poor carrier transport. To overcome this, multiple donor doping strategies e.g. dual doping, gradient doping have been explored. Here, we show for the first time the successful introduction of calcium Ca as an acceptor type dopant into BiVO4 photoelectrodes. Interestingly, instead of generating cathodic photocurrents, the Ca doped BiVO4 photoelectrodes show anodic photocurrents with an enhanced carrier separation efficiency. Hard X ray photoelectron spectroscopy HAXPES shows that this enhancement is caused by out diffusion of Ca during the deposition process, which spontaneously creates a p n junction within the BiVO4 layer. Overall, a significant two fold improvement of the AM1.5 photocurrent is obtained upon Ca doping. This study highlights the importance of controlled doping beyond simply modifying carrier concentration and may enable new device architectures in photoelectrode material

    Tame concealed algebras and cluster quivers of minimal infinite type

    Get PDF
    In this paper we explain how and why the list of Happel-Vossieck of tame concealed algebras is closely related to the list of A. Seven of minimal infinite cluster quivers.Comment: 16 pages, new version with an additional section on cluster-tilted algebras of minimal infinite typ

    Analysis of return distributions in the coherent noise model

    Full text link
    The return distributions of the coherent noise model are studied for the system size independent case. It is shown that, in this case, these distributions are in the shape of q-Gaussians, which are the standard distributions obtained in nonextensive statistical mechanics. Moreover, an exact relation connecting the exponent τ\tau of avalanche size distribution and the q value of appropriate q-Gaussian has been obtained as q=(tau+2)/tau. Making use of this relation one can easily determine the q parameter values of the appropriate q-Gaussians a priori from one of the well-known exponents of the system. Since the coherent noise model has the advantage of producing different tau values by varying a model parameter \sigma, clear numerical evidences on the validity of the proposed relation have been achieved for different cases. Finally, the effect of the system size has also been analysed and an analytical expression has been proposed, which is corroborated by the numerical results.Comment: 14 pages, 3 fig
    corecore