19 research outputs found

    Direct cell mass measurements expand the role of small microorganisms in nature.

    No full text
    Microbial biomass is a key parameter needed for the quantification of microbial turnover rates and their contribution to the biogeochemical element cycles. However, estimates of microbial biomass rely on empirically-derived mass-to-volume relationships and large discrepancies exist between the available empirical conversion factors. Here we report a significant non-linear relationship between carbon mass and cell volume (mcarbon = 197 × V0.46.; R2 = 0.95) based on direct cell mass, volume and elemental composition measurements of twelve prokaryotic species with average volumes between 0.011 – 0.705 μm3. The carbon mass density of our measured cells ranged from 250 to 1800 fg C μm-3 for the measured cell volumes. Compared to other currently used models, our relationship yielded up to 300 % higher carbon mass values. A compilation of our and previously published data showed that cells with larger volumes (> 0.5 μm3) display a constant (carbon) mass-to-volume ratio whereas cells with volumes below 0.5 μm3 exhibit a nonlinear increase in (carbon) mass density with decreasing volume. Small microorganisms dominate marine and freshwater bacterioplankton as well as soils and marine and terrestrial subsurface. The application of our experimentally-determined conversion factors will help to quantify the true contribution of these microorganisms to ecosystem functions and global microbial biomass

    Sugars dominate the seagrass rhizosphere

    Get PDF
    Seagrasses are among the most efficient sinks of carbon dioxide on Earth. While carbon sequestration in terrestrial plants is linked to the microorganisms living in their soils, the interactions of seagrasses with their rhizospheres are poorly understood. Here, we show that the seagrass, Posidonia oceanica excretes sugars, mainly sucrose, into its rhizosphere. These sugars accumulate to mu M concentrations-nearly 80 times higher than previously observed in marine environments. This finding is unexpected as sugars are readily consumed by microorganisms. Our experiments indicated that under low oxygen conditions, phenolic compounds from P. oceanica inhibited microbial consumption of sucrose. Analyses of the rhizosphere community revealed that many microbes had the genes for degrading sucrose but these were only expressed by a few taxa that also expressed genes for degrading phenolics. Given that we observed high sucrose concentrations underneath three other species of marine plants, we predict that the presence of plant-produced phenolics under low oxygen conditions allows the accumulation of labile molecules across aquatic rhizospheres. Seagrass meadows are important carbon sinks. Here, the authors show that organic carbon in the form of simple sugars can accumulate at high concentrations in seagrass rhizospheres because plant phenolic compounds inhibit their consumption by microorganisms

    Simultaneous visualization of flow fields and oxygen concentrations to unravel transport and metabolic processes in biological systems

    Get PDF
    From individual cells to whole organisms, O2 transport unfolds across micrometer- tomillimeter-length scales and can change within milliseconds in response to fluid flows and organismal behavior. The spatiotemporal complexity of these processes makes the accurate assessment ofO2 dynamics via currently availablemethods difficult or unreliable. Here, we present ‘‘sensPIV,’’ a method to simultaneously measure O2 concentrations and flow fields. By tracking O2-sensitive microparticles in flow using imaging technologies that allow for instantaneous referencing,we measuredO2 transport within (1) microfluidic devices, (2) sinking model aggregates, and (3) complex colony-forming corals. Through the use of sensPIV, we find that corals use ciliary movement to link zones of photosynthetic O2 production to zones of O2 consumption. SensPIV can potentially be extendable to study flow-organism interactions across many life-science and engineering applications

    Spatial and Temporal Patterns of Pore Water Chemistry in the Inter-Tidal Zone of a High Energy Beach

    Get PDF
    Submarine groundwater discharge (SGD) is a ubiquitous source of meteoric fresh groundwater and recirculating seawater to the coastal ocean. Due to the hidden distribution of SGD, as well as the hydraulic- and stratigraphy-driven spatial and temporal heterogeneities, one of the biggest challenges to date is the correct assessment of SGD-driven constituent fluxes. Here, we present results from a 3-dimensional seasonal sampling campaign of a shallow subterranean estuary in a high-energy, meso-tidal beach, Spiekeroog Island, Northern Germany. We determined beach topography and analyzed physico-chemical and biogeochemical parameters such as salinity, temperature, dissolved oxygen, Fe(II) and dissolved organic matter fluorescence (FDOM). Overall, the highest gradients in pore water chemistry were found in the cross-shore direction. In particular, a strong physico-chemical differentiation between the tidal high water and low water line was found and reflected relatively stable in- and exfiltrating conditions in these areas. Contrastingly, in between, the pore water compositions in the existing foreshore ridge and runnel system were very heterogeneous on a spatial and temporal scale. The reasons for this observation may be the strong morphological changes that occur throughout the entire year, which affect the exact locations and heights of the ridge and runnel structures and associated flow paths. Further, seasonal changes in temperature and inland hydraulic head, and the associated effect on microbial mediated redox reactions likely overprint these patterns. In the long-shore direction the pore water chemistry varied less than the along the cross-shore direction. Variation in long-shore direction was probably occurring due to topography changes of the ridge-runnel structure and a physical heterogeneity of the sediment, which produced non-uniform groundwater flow conditions. We conclude that on meso-tidal high energy beaches, the rapidly changing beach morphology produces zones with different approximations to steady-state conditions. Therefore, we suggest that zone-specific endmember sampling is the optimal strategy to reduce uncertainties of SGD-driven constituent fluxes

    Nutrients that limit growth in the ocean

    No full text

    Wave transformation and wave-driven flow across a steep coral reef

    Get PDF
    Observations of waves, setup, and wave-driven mean flows were made on a steep coral forereef and its associated lagoonal system on the north shore of Moorea, French Polynesia. Despite the steep and complex geometry of the forereef, and wave amplitudes that are nearly equal to the mean water depth, linear wave theory showed very good agreement with data. Measurements across the reef illustrate the importance of including both wave transport (owing to Stokes drift), as well as the Eulerian mean transport when computing the fluxes over the reef. Finally, the observed setup closely follows the theoretical relationship derived from classic radiation stress theory, although the two parameters that appear in the model-one reflecting wave breaking, the other the effective depth over the reef crest-must be chosen to match theory to data. © 2013 American Meteorological Society

    Permeability shapes bacterial communities in sublittoral surface sediments

    No full text
    Probandt D, Knittel K, Tegetmeyer H, Ahmerkamp S, Holtappels M, Amann R. Permeability shapes bacterial communities in sublittoral surface sediments. Environmental Microbiology. 2017;19(4):1584-1599.The first interaction of water column-derived organic matter with benthic microbial communities takes place in surface sediments which are acting as biological filters catalyzing central steps of elemental cycling. Here we analyzed the bacterial diversity and community structure of sediment top layers at seven sites in the North Sea where sediment properties ranged from coarse-grained and highly permeable to fine-grained and impermeable. Bacterial communities in surface sediments were richer, more even and significantly different from communities in bottom waters as revealed by Illumina tag sequencing of 16S rRNA genes. Sediment permeability had a clear influence on community composition which was confirmed by CARD-FISH. Sulfate-reducing Desulfobacteraceae (2-5% of total cells), Flavobacteriaceae (3-5%) were more abundant in impermeable than in highly permeable sediments where acidobacterial Sva0725 dominated (11-15%). Myxobacterial Sandaracinaceae were most abundant in medium permeable sediments (3-7%). Woeseiaceae/JTB255 and Planctomycetes were major groups in all sediments (4-6%, 8-22%). Planctomycetes were highly diverse and branched throughout the phylum. We propose Planctomycetes as key bacteria for degradation of high molecular weight compounds and recalcitrant material entering surface sediments from the water column. Benthic Flavobacteriaceae likely have restricted capabilities for macromolecule degradation and might profit with Sandaracinaceae and Acidobacteria from low molecular weight compounds
    corecore