97 research outputs found

    Application of Plackett-Burman Design for Spectrochemical Determination of the Last-Resort Antibiotic, Tigecycline, in Pure Form and in Pharmaceuticals: Investigation of Thermodynamics and Kinetics.

    Get PDF
    Tigecycline (TIGC) reacts with 7,7,8,8-tetracyanoquinodimethane (TCNQ) to form a bright green charge transfer complex (CTC). The spectrum of the CTC showed multiple charge transfer bands with a major peak at 843 nm. The Plackett-Burman design (PBD) was used to investigate the process variables with the objective being set to obtaining the maximum absorbance and thus sensitivity. Four variables, three of which were numerical (temperature-Temp; reagent volume-RV; reaction time-RT) and one non-numerical (diluting solvent-DS), were studied. The maximum absorbance was achieved using a factorial blend of Temp: 25 °C, RV: 0.50 mL, RT: 60 min, and acetonitrile (ACN) as a DS. The molecular composition that was investigated using Job's method showed a 1:1 CTC. The method's validation was performed following the International Conference of Harmonization (ICH) guidelines. The linearity was achieved over a range of 0.5-10 µg mL with the limits of detection (LOD) and quantification (LOQ) of 166 and 504 ng mL, respectively. The method was applicable to TIGC per se and in formulations without interferences from common additives. The application of the Benesi-Hildebrand equation revealed the formation of a stable complex with a standard Gibbs free energy change (∆) value of -26.42 to -27.95 kJ/mol. A study of the reaction kinetics revealed that the CTC formation could be best described using a pseudo-first-order reaction

    Application of Infrared Spectroscopy in the Characterization of Lignocellulosic Biomasses Utilized in Wastewater Treatment

    Get PDF
    Global economies are confronting major energy challenges. Mitigating the energy depletion crisis and finding alternative and unconventional energy sources have been subjects for many investigations. Plant-sourced biomasses have started to attract global attention as a renewable energy source. Maximizing the performance of the biomass feedstock in different applications requires the availability of reliable and cost-effective techniques for characterization of the biomass. Comprehending the structure of lignocellulosic biomass is a very important way to assess the feasibility of bond formation and functionalization, structural architecture, and hence sculpting of the corresponding structure−property liaison. Over the past decades, non-invasive techniques have brought many pros that make them a valuable tool in depicting the structure of lignocellulosic materials. The current chapter will be focused on the applications of Fourier transform infrared (FTIR) spectroscopy especially in the mid-infrared region in the compositional and structural analysis of lignocellulosic biomasses. The chapter will provide a display of examples from the literature for the application of FTIR spectroscopy in finding the composition of various biomasses obtained from different parts of plants and applied for wastewater treatment. A comparison between biomasses and physically/chemically treated products will be discussed

    Carbon-Based Materials (CBMs) for Determination and Remediation of Antimicrobials in Different Substrates: Wastewater and Infant Foods as Examples

    Get PDF
    The widespread use of antimicrobials within either a therapeutic or a veterinary rehearsal has resulted in a crisis on the long run. New strains of antimicrobial-resistant microorganisms have appeared. Contamination of water with pharmaceutically active materials is becoming a fact! and efficacy of wastewater treatment plants is a question. Adsorption is a promising technique for wastewater treatment. Carbon-based materials are among the most commonly used adsorbents for remediation purposes. Food production and commercialization are posing rigorous regulations. In this concern, almost all authoritarian societies are setting up standards for the maximum residue levels permissible in raw and processed food. Among these products is infant foods. The current trend is to use carbon-based and recycled from agricultural wastes, which can selectively remove target antimicrobials. Nanoparticles are among the most commonly used materials. With the enormous amount of data generated from an analytical process, there is a need for a powerful data processing technique. Factorial designs play an important role in not only minimalizing the number of experimental runs, and hence saving chemicals, resources, and reducing waste but also, they serve to improve the sensitivity and selectivity, the most important analytical outcomes

    Synthesis and Application of Cobalt Oxide (Co3O4)-Impregnated Olive Stones Biochar for the Removal of Rifampicin and Tigecycline: Multivariate Controlled Performance

    Get PDF
    Cobalt oxide (Co3O4) nanoparticles supported on olive stone biochar (OSBC) was used as an efficient sorbent for rifampicin (RIFM) and tigecycline (TIGC) from wastewater. Thermal stabilities, morphologies, textures, and surface functionalities of two adsorbents; OSBC and Co-OSBC were compared. BET analysis indicated that Co-OSBC possesses a larger surface area (39.85 m2/g) and higher pore-volume compared to the pristine OSBC. FT-IR analysis showed the presence of critical functional groups on the surface of both adsorbents. SEM and EDX analyses showed the presence of both meso- and macropores and confirmed the presence of Co3O4 nanoparticles on the adsorbent surface. Batch adsorption studies were controlled using a two-level full-factorial design (2k-FFD). Adsorption efficiency of Co-OSBC was evaluated in terms of the % removal (%R) and the sorption capacity (qe, mg/g) as a function of four variables: pH, adsorbent dose (AD), drug concentration, and contact time (CT). A %R of 95.18% and 75.48% could be achieved for RIFM and TIGC, respectively. Equilibrium studies revealed that Langmuir model perfectly fit the adsorption of RIFM compared to Freundlich model for TIGC. Maximum adsorption capacity (qmax) for RIFM and TIGC was 61.10 and 25.94 mg/g, respectively. Adsorption kinetics of both drugs could be best represented using the pseudo-second order (PSO) model.This research was funded by Qatar University under the National Science Promotion Program, QUNSPP-(CAS)-2021-(108). The NSPP is managed by Qatar University Young Scientists Center (QUYSC), Doha, Qatar. The findings achieved herein are solely the responsibility of the author

    Prediction of Gut Wall Integrity Loss in Viral Gastroenteritis by Non-Invasive Marker

    Get PDF
    BACKGROUND: Intestinal fatty acid binding proteins (I-FABPs) are mainly expressed in the intestinal villi, which are the initial site of destruction in viral gastroenteritis.AIM: This study was designed to assess serum I-FABPs as a predictor of gut wall integrity loss in viral gastroenteritis.PATIENTS AND METHODS: This case-control cross-sectional study was conducted on 93 cases of acute viral gastroenteritis. Twenty-eight healthy children matching in age were recruited as control group. Serum I-FABPs were measured using ELISA technique. Viral detection and typing were done by PCR for adenovirus, and by Reverse transcriptase PCR for rotavirus, astrovirus and norovirus.RESULTS: Serum I-FABPs level was significantly higher in the cases compared to the controls and was also higher in the 46 rotavirus gastroenteritis cases compared to other viral gastroenteritis cases. Serum I- FABPs level was significantly higher in severely dehydrated cases as compared to mildly dehydrated ones (P=0.037).CONCLUSION: Serum I-FABPs could be used as an early and sensitive predictor marker of gut wall integrity loss in children with viral gastroenteritis and its level can indicate case severity

    Improving the Muskingum flood routing method using a hybrid of particle swarm optimization and bat algorithm

    Get PDF
    Flood prediction and control are among the major tools for decision makers and water resources planners to avoid flood disasters. The Muskingum model is one of the most widely used methods for flood routing prediction. The Muskingum model contains four parameters that must be determined for accurate flood routing. In this context, an optimization process that self-searches for the optimal values of these four parameters might improve the traditional Muskingum model. In this study, a hybrid of the bat algorithm (BA) and the particle swarm optimization (PSO) algorithm, i.e., the hybrid bat-swarm algorithm (HBSA), was developed for the optimal determination of these four parameters. Data for the three different case studies from the USA and the UK were utilized to examine the suitability of the proposed HBSA for flood routing. Comparative analyses based on the sum of squared deviations (SSD), sum of absolute deviations (SAD), error of peak discharge, and error of time to peak showed that the proposed HBSA based on the Muskingum model achieved excellent flood routing accuracy compared to that of other methods while requiring less computational time

    Dynamics of Anti-S IgG Antibodies Titers after the Second Dose of COVID-19 Vaccines in the Manual and Craft Worker Population of Qatar

    Get PDF
    There is limited seroepidemiological evidence on the magnitude and long-term durability of antibody titers of mRNA and non-mRNA vaccines in the Qatari population. This study was conducted to generate evidence on long-term anti-S IgG antibody titers and their dynamics in individuals who have completed a primary COVID-19 vaccination schedule. A total of 300 male participants who received any of the following vaccines BNT162b2/Comirnaty, mRNA-1273, ChAdOx1-S/Covishield, COVID-19 Vaccine Janssen/Johnson, or BBIBP-CorV or Covaxin were enrolled in our study. All sera samples were tested by chemiluminescent microparticle immunoassay (CMIA) for the quantitative determination of IgG antibodies to SARS-CoV-2, receptor-binding domain (RBD) of the S1 subunit of the spike protein of SARS-CoV-2. Antibodies against SARS-CoV-2 nucleocapsid (SARS-CoV-2 N-protein IgG) were also determined. Kaplan–Meier survival curves were used to compare the time from the last dose of the primary vaccination schedule to the time by which anti-S IgG antibody titers fell into the lowest quartile (range of values collected) for the mRNA and non-mRNA vaccines. Participants vaccinated with mRNA vaccines had higher median anti-S IgG antibody titers. Participants vaccinated with the mRNA-1273 vaccine had the highest median anti-S-antibody level of 13,720.9 AU/mL (IQR 6426.5 to 30,185.6 AU/mL) followed by BNT162b2 (median, 7570.9 AU/mL; IQR, 3757.9 to 16,577.4 AU/mL); while the median anti-S antibody titer for non-mRNA vaccinated participants was 3759.7 AU/mL (IQR, 2059.7–5693.5 AU/mL). The median time to reach the lowest quartile was 3.53 months (IQR, 2.2–4.5 months) and 7.63 months (IQR, 6.3–8.4 months) for the non-mRNA vaccine recipients and Pfizer vaccine recipients, respectively. However, more than 50% of the Moderna vaccine recipients did not reach the lowest quartile by the end of the follow-up period. This evidence on anti-S IgG antibody titers should be considered for informing decisions on the durability of the neutralizing activity and thus protection against infection after the full course of primary vaccination in individuals receiving different type (mRNA verus non-mRNA) vaccines and those with natural infection.The World Health Organization (WHO) - grant number [2021/1183356-0]

    Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)

    Get PDF
    Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic
    corecore