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Abstract

The widespread use of antimicrobials within either a therapeutic or a veterinary 
rehearsal has resulted in a crisis on the long run. New strains of antimicrobial-
resistant microorganisms have appeared. Contamination of water with pharma-
ceutically active materials is becoming a fact! and efficacy of wastewater treatment 
plants is a question. Adsorption is a promising technique for wastewater treatment. 
Carbon-based materials are among the most commonly used adsorbents for 
remediation purposes. Food production and commercialization are posing rigor-
ous regulations. In this concern, almost all authoritarian societies are setting up 
standards for the maximum residue levels permissible in raw and processed food. 
Among these products is infant foods. The current trend is to use carbon-based 
and recycled from agricultural wastes, which can selectively remove target anti-
microbials. Nanoparticles are among the most commonly used materials. With the 
enormous amount of data generated from an analytical process, there is a need for a 
powerful data processing technique. Factorial designs play an important role in not 
only minimalizing the number of experimental runs, and hence saving chemicals, 
resources, and reducing waste but also, they serve to improve the sensitivity and 
selectivity, the most important analytical outcomes.

Keywords: pharmaceutically active materials (PhAMs), wastewater treatment, 
adsorption, carbon-based materials (CBMs), infant food, detection, factorial designs

1. Introduction

Drugs and pharmaceutically active materials (PhAMs) represent an enormous 
category of chemicals that include all materials with therapeutic effects (e.g., 
drugs that can be further classified according to their chemical structures, biologi-
cal activities, and mechanism of action), cosmetics, supplementary and dietary 
products, personal care products (PCPs), X-rays contrast media, etc. Daily use of 
PhAMs is then becoming a fact. As per the Organization for Economic Co-operation 
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and Development (OECD) report, in 2017, the expenditure on retail pharmaceuti-
cals per capita was the highest in USA and averaged 564 $/person among the OECD 
countries [1].

It is noteworthy to mention that 75% of this amount was devoted to prescrip-
tion drugs. With the increased awareness with health and health standards, the 
consumption of PhAMs is also escalating. As per FDA’s (USA Food and Drug 
Administration) Center for Drug Evaluation and Research’s (CDER) annual report, 
59 novel drugs were approved in 2018, compared to 48 drugs in 2019. Of course, 
these approvals are associated with many new formulations being available for the 
consumer in the market [2, 3].

Representing a significant category of aquatic pollutants, PhAMs are usually 
released into the aquatic systems from different sources, including but not limited 
to: the effluents of the manufacturing sites and hospitals, illegal disposal, veterinary 
applications, and landfill leachate. The daily use by humans and the subsequent 
conversion of PhAMs into various metabolites with variable chemical structures is 
also a major source. The fate of these metabolites, and probably their parent drug 
compound, is usually the wastewater [4–8].

Antimicrobials (antibiotics, antifungals, antiseptics, antivirals, etc.) are also an 
enormous category of pharmaceuticals used mainly in the treatment and control 
of infectious diseases. Having unquestionable benefits for human and animal 
health, their use is becoming indispensable. However, nothing is absolute! The per-
vasive use of antimicrobials within either a therapeutic or a veterinary rehearsal 
(mainly antibiotics) especially in developing countries where medicine is usually 
dispensed as OTC (over the counter, non-prescription) drug has resulted in a crisis 
in the long run. Moreover, the excessive release of antibiotics into the surface and 
wastewater with ubiquitous concentrations reflects the magnitude of the problem 
[9]. New strains of antimicrobial-resistant microorganisms have appeared. These 
breeds are no longer responding to any medication, an issue that exaggerates the 
problem especially with the sluggish development of new drugs and therapeutics 
[10–13].

Figure 1 shows a schematic representation of the subcategories of antibiotics 
and their fate in the environment.

Antimicrobials can be further classified according to their chemical structures 
into subcategories; for example, antibiotics can be classified into subclasses such 

Figure 1. 
Schematic representation of categories of antibiotics and their routes in the environment.
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as quinolones and fluoroquinolones, tetracyclines, aminoglycosides, β-lactams, 
sulfonamides, streptogramin antibiotics, nitroimidazoles, and macrolides [14]. Due 
to this variable chemical structure, removal of this category of pollutants is an intri-
cate task. Several approaches exist in literature for the remediation of wastewater 
samples from antimicrobials and their metabolites. Similarly, many techniques were 
described to detect anti-infective agents in foods and dietary supplements.

2. Chapter taxonomy

Throughout the following subsections, the discussion will be focused on appli-
cations of carbon-based materials (CBMs) for the detection of antimicrobials in 
food products, especially baby foods, as well as the remediation of wastewaters 
from antimicrobials. Though the aim is to survey the use of CBMs in the literature 
as a removal approach, a comparison between CBMs and other materials/techniques 
used will be useful in terms of evaluating their removal efficiency. Special attention 
will be paid to the methods conducted via the use of factorial designs and response 
surface methodological approaches.

3.  Pharmaceutically active materials (PhAMs) in water and wastewater: 
frequency, fate, health risks, regulatory concerns, and removal

3.1 Occurrences and fate

As previously mentioned, PhAMs intimidate the water systems from different 
sources. Contaminated water bodies included wastewater as well as drinking water. 
Reported concentrations were in the range of parts-per-trillion (ppt) up to parts-
per-billion (ppb), and included locations all over the world [15–21]. Higher concen-
trations, up to μg/L, were also reported for more than 160 drug species and PhAMs 
[9, 22]. In a comprehensive review prepared by Verlicchi et al. [16], the risk quotient 
(RQ ) of 51 PhAMs was screened and assessed. Out of the investigated PhAMs, it 
was found that 14 compounds represent a high risk to the environment. The list 
included seven antibiotics from different subclasses (erythromycin, azithromy-
cin, clarithromycin, tetracycline, ofloxacin, amoxicillin, and sulfamethoxazole), 
representing 50% of the high-risk PhAMs. The reminder of the list included 
antipsychotics, lipid-regulating, and anti-inflammatory drugs. Yet, 19 PhAMs were 
of a medium risk, and this time the list included eight antimicrobials (penicillin G, 
sulfadiazine, cefotaxime, enoxacin, trimethoprim, doxycycline, roxithromycin, and 
metronidazole), representing around 42% of the reported list. For antimicrobials, 
concentrations ranged between 0.001 and 32 μg/L, with the highest absolute and 
highest average concentrations being reported for ofloxacin and sulfadiazine/ofloxacin, 
respectively. Antifungals also had their share and clotrimazole was reported with a 
concentration of 0.029 μg/L [16].

The presence of these concentrations in wastewater as well as drinking water 
is raising several apprehensions about the competency of wastewater treatment 
plants (WWTPs) and the implemented remediation techniques. These concerns 
might be resolved when it is comprehended that residues of undegradable 
PhAMs reach the WWTPs through the urban wastewater compilation struc-
tures. The positive point is that some of these compounds might be completely 
degradable and can be effectually removed; however, others, possessing variable 
chemical structures with different physical, biological, and chemical properties, 
may not.
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These compounds being widely variable in terms of hydrophobicity, polarity, 
solubility, volatility, absorbability, and binding abilities, as well as biodegradability 
can get through to the WWTPs even at very low concentrations [23–26]. The intri-
cate task in removing PhAMs, therefore, stems from their properties. The majority 
of these materials possess acidic/basic functional groups, are of high polarity with 
high solubility, and cannot be easily degraded, or hydrolyzed. Yet, and in com-
parison to other contaminants (e.g., dyes/pigments, pesticides), PhAMs could be 
classified as persistent [27, 28].

Figure 1 shows a representation of the presence of antibiotics (human and  
veterinary) in the environment, and their routes until they reach the aquatic 
environments and WWTPs.

3.2 Health risks

The consequences of the existence of the PhAMs either in waste and drinking 
water or even in WWTPs is still indistinct. However, what is well understood is 
that the impact in the long run extends to human’s and animal’s health, the aquatic 
environment, and eventually the ecosystem. This effect is greatly dependent on 
the released dose of the PhAMs as well as their pharmacological effects. The issue 
becomes of concern when we know that the metabolites might be of a higher risk 
compared to the parent drug compound.

These effects and upon protracted exposure to PhAMs above the permissible 
limits include for example intoxication in human beings (e.g., the inundated 
enzyme-substrate relationship following long-term exposure to analgesics might 
result in elevated plasma concentrations and hence toxicity). Other adverse effects 
include somatic abnormalities, allergies, lung diseases, and hormonal disruption 
(e.g., in case of hormones, the adverse effects might instigate cancer following the 
destruction of DNA) [24, 29–31].

Moreover, the toxicity of the aquatic environment indirectly influences the 
human health. At the aquatic level, the metabolic mechanisms of aquatic micro-
organisms are affected. At the microbial level, microorganisms, upon prolonged 
exposure to anti-infectives, for example, become more tolerant and new strains, 
which cannot be cured using the conventional antimicrobials, are now in the scene. 
Influences include impaired reproduction, adversative effects on movement, and 
metabolism in mussels. Since PhAMs are not the only species released into the 
receiving aquatic bodies, adverse synergetic interactions between PhAMs and other 
contaminants should be expected [32–34].

3.3 Regulations and roles of regulatory bodies

The following few paragraphs will focus on the regulatory measures taken 
by the regulatory bodies and some countries to control the release of PhAMs, 
especially human drugs, in aquatic environments. Many countries have executed 
the environmental risk assessment (ERA) measures for the regulation of human 
PhAMs. Taking USA as an example, the National Environmental Policy Act of 1969 
(NEPA) 21 C.F.R. 25.15, 40 C.F.R. 1508, necessitates all concerned organizations, 
for example, the U.S. EPA (Environmental Protection Agency) and the U.S. FDA, to 
implement the following measures:

• Assess the environmental influences of their actions,

• Perform an environmental assessment (EA),
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• Create an environmental impact statement (EIS).

Consequently, any application to file a new drug to the US FDA requires the 
applicant to submit an EA or requires an entitlement for categorical exclusion. The 
latter would be approved in case the filed substance will not increase the concentra-
tion of an “active moiety”; or it will increase the concentration of this moiety, but 
the estimated concentration of this moiety as it reaches the aquatic body (entrance 
point) is below 1 ppb; or the filed material will neither change the distribution of 
the substance, nor its metabolites or degradation products [35]. In Canada, how-
ever, a priority substance list (PSL) has been founded and priority is given to the 
assessment of the toxicity of the PhAMs [36–38].

As per US FDA guidelines, and in order to estimate the expected introduction 
concentration (EIC) of a substance at the point of entry to the aquatic body, the 
following equation should be used:

  EIC–Aquatic   (ppb)  =   A ∗ B ∗ C ∗ D  (1)

where,
A is the amount produced of the PhAM annually—as an active moiety—in 

kilograms and designated for direct use;
B is the L−1/ day entering the publicly owned treatment works (POTWs);
C is the conversion factor (1 year/365 days); and
D is the conversion factor (109 μg/kg)
This equation was established assuming the following:

• No metabolism is taking place,

• All PhAMs manufactured annually are consumed and enter the POTWs,

• The use of the produced PhAMs happens thru the US and depends on the 
population and quantity of wastewater produced.

The European Union (EU), and on the other hand, has created two lists: one 
is a priority list, which includes 45 PhAMs where the environmental quality 
standards (EQS) have to be held in the highest regard for the disposal of these 
materials into the aquatic environments. The other list is a “watch-list” that 
compromises eight PhAMs, for which the risk to the aquatic environment needs to 
be investigated and verified [39]. The second list included antimicrobials, mainly 
antibiotics (azithromycin). Two other antibiotics, amoxicillin and ciprofloxacin, 
were also included in the same list but with different justifications. As per the 
commission, new “eco-toxicological” data were obtained for clarithromycin and 
azithromycin. Table 1 shows the antimicrobials included in the watch-list, their 
analytical method of detection, and the maximum acceptable method detection 
limit (ng/L).

3.4 Water and wastewater treatment approaches

3.4.1 Classification of remediation approaches

Surveying the literature shows that different approaches have been reported 
for remediation of water and wastewater from PhAMs [24]. In general, wastewa-
ter treatment technologies can be categorized into chemical (e.g., ion exchange, 
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chlorination, coagulation, ozonation, photo- and chemical oxidation); physical 
(e.g., membrane separation, and adsorption); and biological (e.g., biodegradation, 
membrane bioreactor, and enzyme bioreactor) approaches. Sometimes, combina-
tional approaches are used as a series of treatment steps [24, 38–45]. Each of these 
approaches has its pros and cons. For example, chemical and physical approaches, 
unless being coupled to experimental design and response surface methodological 
approaches, would result in the generation of toxic byproducts, and the con-
sumption of chemicals and solvents as well as time and resources. Overall, these 
techniques will not be green or ecofriendly. Figure 2 shows a classification of the 
commonly used approaches in wastewater treatment.

3.4.2 Adsorption as a remediation approach

As previously mentioned, removal of PhAMs in WWTPs might be inadequate 
and occurs partially. Implementing the traditional remediation techniques, the 
removal of antibiotics was incomplete (e.g., removal of β-lactams was achieved 
with 17–43% efficiency, macrolides with 40–46% efficiency, sulfonamides with 
66–90% efficiency, and tetracyclines with 66–90% efficiency) [46]. Adsorption 
as a physical/chemical remediation methodology is a versatile technique that has 
been extensively used in water and wastewater treatment from almost all types of 
contaminants (dyes, heavy metals, PhAMs, etc.) [6–8, 41, 43, 46–51].

As an approach, adsorption offers several advantages, mainly the availability of 
candidate adsorbents at almost no cost, easy application on the large scale with no 
toxic byproducts being generated, and most importantly, reasonable competency. 
Moreover, adsorption can be used as a removal approach following biological or 
chemical treatments in WWTPs. Several materials have been reported in litera-
ture as adsorbents. These adsorbents might be naturally occurring (e.g., carbon 
adsorbents recycled from agricultural waste products) [47–51], or synthetic (e.g., 
microporous and mesoporous carbons synthesized using Y zeolite and synthesized 
mesoporous silica as hard templates) [52]. Various adsorbents were reported in 
literature for the removal of antibiotics [53]; for example, carbonaceous materials 
[54], polymeric resins [55], chitosan [56], mesoporous materials [52], and molecu-
larly imprinted polymers (MIPs) [57]. In the following subsections, the focus will 

Name of the antimicrobial* Indicative analytical 

method**,***

Maximum acceptable method 

detection limit (ng/L)

Macrolide antibiotics

• Erythromycin

• Clarithromycin

• Azithromycin

SPE—LC-MS-MS 19

Metaflumizone LLE—LC-MS-MS
or

SPE—LC-MS-MS

65

Amoxicillin SPE—LC-MS-MS 78

Ciprofloxacin SPE—LC-MS-MS 89
*CAS (Chemical Abstracts Service) and EU (European Union) numbers can be obtained from Ref. [30].
**Extraction methods: LLE—liquid-liquid extraction; SPE—solid-phase extraction.
***Analytical methods: GC–MS—Gas chromatography-mass spectrometry; LC-MS-MS—Liquid chromatography 
(tandem) triple quadrupole mass spectrometry.

Table 1. 
Some of the antimicrobials included in the watch-list of substances for Union-wide monitoring as set out in 
Article 8b of Directive 2008/105/EC.
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be on carbon-based materials and their subcategories that are commonly used in the 
removal of antimicrobials.

3.4.3 Carbon-based materials (CBMs) for water and wastewater treatment

Possessing high surface area, pore size distribution, and pore volume, surface 
properties that enable strong interaction with the adsorbate, carbonaceous materi-
als are among the most widely used and investigated adsorbents. In the following 
subsections, application of activated carbons (AC), graphene, carbon xerogels, and 
carbon nanotubes (CNTs), see Figure 2, in the treatment of water and wastewater 
from contaminants will be thoroughly discussed.

3.4.3.1 Activated carbons (ACs)

Activated carbon (AC) is generally a porous solid material with high surface 
area. With a high extent of microporosity, AC is a contemporaneous adsorbent that 
is widely used in water treatment on a large scale. According to the IUPAC classifi-
cation, three types of materials can be recognized depending on the pore diameter: 
(1) microporous (pores ˂ 2 nm diameter), (2) mesoporous (pores 2–50 nm diameter), 
and (3) macroporous (pores ˃ 50 nm diameter) [58]. Activated carbon is an 
example of mesoporous materials, which is basically composed of a non-constant 
carbon framework. In reality, both micro- and mesopores exist in AC depending on 
the synthetic conditions.

As mentioned, AC can be obtained from agro-waste, carbonization at low 
temperature, and activation (physical “PA” or chemical “CA” depending on the 
temperature at which the activation/carbonization was conducted, and the experi-
mental conditions where PA is usually conducted at anaerobic conditions compared 
to the use of inert gas in case of CA) [47–51, 53]. Adsorption capacity and efficiency 
are greatly dependent on the activation procedure followed and the nature of the 
raw material. Though CA takes place over a short period of time compared to PA, 
due to the usage of chemicals, CA might not be an ecofriendly approach [59, 60].

Treatment of AC using different approaches and with the purpose of increasing 
its adsorption efficiency for antimicrobials or even using it without activation has 
been the subject of lots of investigations. Treatment procedures included loading of 

Figure 2. 
Classification of wastewater treatment technologies.
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magnetite nanoparticles, where for example, powdered date pits (DPs) were treated 
with a mixture of ferric and ferrous with a ratio of 2:1, followed by stirring at 60°C 
for 3 h, then neutralization using 4 M NaOH till pH 12. The mixture was washed with 
water several times, with methanol four times and then left to evaporate. Figure 3 
shows a picture for DPs before and after magnetization. Prepared AC was used for the 
removal of enrofloxacin and difloxacin from water samples. Other activation tech-
niques included treatment with NaOH for the removal of tetracycline [61], H3PO4 
and H4P2O7-AC for the removal of ciprofloxacin [62], composites for the removal of 
tetracycline [63], and sulfamethoxazole [64]. Untreated AC was also applied for the 
removal of antibiotics; for example, non-AC produced by pyrolysis of primary paper 
mill sludge was used for the removal of sulfamethoxazole [65] and tetracyclines [66].

3.4.3.2 Carbon nanotubes (CNTs)

First discovered in 1991, CNTs have become a target of hundreds of investiga-
tions. Representing an enormous transition in the field of nano-products, CNTs 
have seen an escalating interest in applications as well as investment. With extraor-
dinary physicochemical properties, and feasibility of surface modification, CNTs 
are a trap for many environmental pollutants. Compared to the discrete structure 
of ACs, CNTs possess a more compact and well-defined structure. Three types of 
CNTs are now known: single-walled carbon nanotubes (SWCNTs), double-walled 
carbon nanotubes (DWCNTs), and multi-walled carbon nanotubes (MWCNTs). As 
their name implies, MWCNTs, unlike SWCNTs, are basically formed of cylinders 
arranged coaxially with the graphitic shells being alienated at a space of 0.34 nm, 
and a diameter of 1 nm. Therefore, the aspect ratio of the cylinder usually surpasses 
105 and the CNTs are usually said to be highly directionally dependent or aniso-
tropic. This feature, in addition to the noticeable chirality of the carbon atoms and 
their possible variable arrangements around the perimeter of the cylinder, the hol-
low structure with multiple adsorption sites, represents that of an ideal adsorbent 
[67–70]. Figure 4 shows the possible adsorption sites in a CNT:

1. The external sites: located on the outside surface of each CNT;

2. The internal sites: the interior of individual CNT;

Figure 3. 
Date pits (DPs) (A) before and (B) after loading of magnetite. Picture was taken in our laboratory at Qatar 
University.
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3. The interstitial sites: located between the nanotubes;

4. The furrows: located across the peripheral intersection of two adjacent CNTs.

Applications of CNTs in the removal of antimicrobials has seen a major prog-
ress in the past few years. Untreated SWCNTs were used to remove tetracycline, 
sulfamethoxazole, and ciprofloxacin, oxytetracycline [71–74]. SWCNTs refluxed 
with 70% HNO3 were used for the removal of triclosan [75]. Pristine MWCNTs 
were used for the removal of roxarsone [76]. Functionalization with carboxylic and 
hydroxyl moieties facilitated the removal of sulfapyridine [77].

3.4.3.3 Graphene-based materials

Graphene, graphene oxide (GO), and reduced graphene oxides (rGOs) are 
attracting a great deal of attention nowadays. Graphene is a 2D sheet in which the 
Sp2-hybridized carbon atoms are arranged as a monolayer. With a large surface area, 
graphene can adsorb aquatic PhAMs via van der Waals or π-π electronic interactions 
[46, 78]. Since majority of antibiotics possess one or more cyclic component, they 
can be feasibly adsorbed by graphene via π-π interaction. Ciprofloxacin is among 
the antibiotics that have been removed using GS (graphene-soy gel) bio-composites 
[79]. GO was used to remove levofloxacin from aqueous solutions [80]. rGOs were 
similarly applied to remove sulfapyridine and sulfathiazole [81].

4.  PhAMs in infant food: occurrence, health risks, regulations, and 
determination

4.1 Occurrence, health risks, and regulatory issues

Three categories of infant foods can be recognized: (1) infant formulas 
(0–6 months), (2) follow-on formulas (6–12 months), and (3) growth formulas 
(different ages after baby’s first year and dependent on child’s age). The composi-
tion of these formulas is variable and is dependent on the infant’s age and nutri-
tional needs of this age. Source of these formulas is therefore variable. Bovine milk 
is a major source for these formulas. Therefore, it is indispensable to ensure that 
these formulas are veterinary-drugs free!

The increasing understanding of the assembly of the food chain and the 
probability of infection of human with these resilient microorganisms either 

Figure 4. 
(A) SWCNTs and (B) MWCNTs. The inset shows the possible adsorption sites.
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directly or via the food chain has explained largely the spread of these species. 
Therefore, the process of food production and commercialization is posing more 
rigorous regulations nowadays. In this regard, different societies, for example 
Food and Drug Administration (US FDA), European Union (EU), World Health 
Organization (WHO) in collaboration with Food and Agriculture Organization 
of the United Nations (FAO) creating the FAO/WHO Codex Alimentarius 
Commission (CAC), are setting up standards for the maximum residue levels 
(MRLs) permissible in raw and processed food products of animal or poultry ori-
gin. Yet, any food product that would conform to these criteria and the preceding 
risk assessments cannot be banned by countries of the World Trade Organization 
(WTO) [82–86].

Infant foods, in specific, should be monitored with a kind of scrupulousness 
either statutory or non-statutory. The main apprehension is that this food is to be 
offered to an age group that is the most susceptible for microbial infections and 
the chance of spread of resistant microorganisms becomes more likely. As per EU 
council regulation No. 2377/90, the MRL extends to include not only the intact 
drugs, but their degradation products as well as their metabolites. While the MRLs 
are well defined for a variety of baby foods, the situation is different for meat-, 
milk-, poultry-based infant foods, where the EU council is implementing the 
zero-tolerance policy; that is, the presence of such drugs in the said foods is totally 
banned. Existence of such a policy necessitates the presence of a sensitive analyti-
cal technique that can determine suspected drugs at even minute concentrations 
[86, 87].

4.2 Determination of antimicrobials in infant foods

Few methods exist in literature for the determination of antimicrobials in infant 
foods with major attention being directed to fluoroquinolones and tetracyclines, 
few antifungals, antiseptics, and antivirals. Techniques used ranged from pressur-
ized liquid extraction followed by solid phase extraction (SPE) and LC-fluorescence 
detector analysis to ultra-high-performance liquid chromatography hyphenated to 
tandem mass spectrometry (UHPLC-MS/MS) and salting-out assisted liquid-liquid 
extraction (LLE) coupled to UHPLC-MS/MS [88–92].

With the progression in analytical method development, the current trend is to 
use miniaturized materials, which can selectively remove the target antimicrobial. 
Nanoparticles (NPs) either functionalized or non-functionalized, MWCNTs, 
molecularly imprinted polymers (MIPs), and graphene are among the most com-
monly used materials. Magnetic nanoparticles (MNPs) in particular and with their 
large surface area, and hence the swiftness of sorption, offer a great advantage 
in sample treatment [93, 94]. Surveying the literature shows that applications of 
CBMs in sample treatment are almost absent. In one of the investigations [95], the 
Zr-Fe-CMNPs composites were studied for sample pretreatment. It was shown that 
coating of the Zr-Fe MNPs with carbon increased elution efficiency of the studied 
fluoroquinolones, and therefore was used for the determination of fleroxacin, 
norfloxacin, and ofloxacin in meat-based baby food samples.

5. Multivariate analysis

Several parameters affect the adsorption of PhAMs either from wastewater or 
from foods. For example, parameters such as pH, contact time, adsorbent dose, 
initial adsorbate concentration, and ionic strength can affect adsorption efficiency 
of studied adsorbents [47–51].
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Yet, very few of the techniques reported in literature implemented chemo-
metrics or factorial designs as an approach and the regular one-variable-at-time 
(OVAT) approach is still used. In such an approach, only one variable is investi-
gated at a time, with almost no idea about factorial interactions and no idea on 
how to deal with multiple-response variables concurrently. With the enormous 
amount of data generated from an analytical process, the need for a powerful 
data processing technique is needed. Chemometrics plays an important role 
not only in minimalizing the number of experimental runs, and hence saving 
chemicals, resources, and reducing waste but also in serving to improve the 
sensitivity and selectivity of the methods, the most important analytical outcomes 
[47–51, 96–99].

As a vision, Green Analytical Chemistry (GAC) adopts 12 principles that serve 
to compromise between the quality of an analytical process and the conservation of 
environment. Achieving such a settlement is an intricate task! Using chemometrics 
is one aspect of such an arrangement and ensuring a sustenance of the highest 
safety standards—both in water and wastewater remediation and in the production 
of infant foods—is another aspect.

Design of Experiments (DoE) as a multivariate approach is used to screen and 
then optimize the experimental conditions. The design usually entails two phases: 
screening (where all variables that might affect the process are investigated at wider 
levels), then optimization (where variables that were proved to be statistically sig-
nificant from phase I are re-tested at narrower levels). Both phases are accompanied 
by statistical analysis using analysis of variance (ANOVA) [99].

In one of the investigations, a method based on pressurized liquid (PLE) and 
LC with fluorescence detection (LC-FLD) was used for the determination of 
residues of fluoroquinolones in baby foods. Factorial design was implemented in 
two phases. In the screening rehearsal, a fractional-factorial design was adopted 
to screen the impact of four parameters on the extraction process. Statistically 
significant variables as per ANOVA were further optimized using the face-centered 
central composite design [89, 100]. Applications of other designs were also 
reported [101].

6. Conclusions

The literature is rich with hundreds of articles that investigate the removal of 
antimicrobials from water and wastewater samples. Investigations that entail the 
usage of CBMs such as ACs, CNTs, and the graphene family, which possess unique 
physicochemical properties and most importantly a high surface area, are the most 
prevailing. Yet, and on the other hand, very few investigations on the determination 
of antimicrobials in baby foods, an important concern, are available in literature. 
Usage of CBMs in such a rehearsal is almost absent. All in all, removal of antimicro-
bials from wastewater and their determination in baby foods are usually affected by 
a number of variables. The common approach found in literature is the one based 
on the investigation of one-factor-at-a-time (OFAT). Application of chemometrics 
is still not as expected.
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