974 research outputs found
Hawking's radiation in non-stationary rotating de Sitter background
Hawking's radiation effect of Klein-Gordon scalar field, Dirac particles and
Maxwell's electromagnetic field in the non-stationary rotating de Sitter
cosmological space-time is investigated by using a method of generalized
tortoise co-ordinates transformation. The locations and the temperatures of the
cosmological horizons of the non-stationary rotating de Sitter model are
derived. It is found that the locations and the temperatures of the rotating
cosmological model depend not only on the time but also on the angle. The
stress-energy regularization techniques are applied to the two dimensional
analog of the de Sitter metrics and the calculated stress-energy tensor
contains the thermal radiation effect.Comment: 13 pages, LaTex format, accepted for publication Astrophysics and
Space Science, Springer; Journal ID: 10509, Article ID: 606, Date 2011-01-1
Multi-wavelength fiber laser with erbium doped zirconia fiber and semiconductor optical amplifier
Multi-wavelength hybrid fiber lasers are demonstrated in both ring and linear cavities using a fabricated Erbium-doped Zirconia fiber (EDZF) and semiconductor optical amplifier (SOA) as gain media. In both configurations, the a fiber loop mirror, which is constructed using a 3 m long polarization maintaining fiber (PMF) and a polarization insensitive 3dB coupler is used as a comb filter for the fiber laser. In the ring cavity, 10 simultaneous lines with peak power above -26 dBm is obtained at 1550 nm region. This is an improvement compared to the linear cavity configuration which has only 5 simultaneous lines observed from wavelength 1556.1 nm to 1563.0 nm with the peak power above -40 dBm. Both hybrid lasers has a constant line spacing of 1.7 nm, which is suitable for wavelength division multiplexing and sensing applications and shows a stable operation at room temperature
Passively Q-switched fiber lasers using a multi-walled carbon nanotube polymer composite based saturable absorber
We demonstrate a simple, compact and low cost Q-switched fiber lasers based on Erbium-doped fiber (EDF) and Thulium-doped fiber (TDF) to operate at 1534.5 nm and 1846.4 nm, respectively by exploiting a multi-walled carbon nanotubes (MWCNTs) polymer composite film based saturable absorber (SA). The composite is prepared by mixing the MWCNTs homogeneous solution into a dilute polyvinyl alcohol polymer solution before it is left to dry at room temperature to produce thin film. Then the film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity for Q-switching pulse generation. The EDF laser generates a stable pulse train with repetition rates ranging from 38.11 kHz to 48.22 kHz by varying the 980 nm pump power from 39.0 mW to 65.3 mW. At the 65.3 mW pump power, the pulse width and pulse energy were 5.3 μs and 99.75 nJ, respectively. The TDF laser generates a stable pulse train with 10.38 kHz repetition rate, 17.52 μs pulse width and 11.34 nJ pulse energy at 121.1 mW 800 nm pump power. A higher performance Q switching is expected to be achieved in both fiber lasers with the optimization of the SA and laser cavity
Pool boiling on modified surfaces using R-123
Paper presented at the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, 16-18 July, 2012.Saturated pool boiling of R-123 was investigated for five horizontal copper surfaces modified by different treatments, namely: an emery polished surface, a fine sandblasted surface, a rough sandblasted surface, an electron beam enhanced surface and a sintered surface. Each 40 mm diameter heating surface formed the upper face of an oxygen-free copper block, electrically heated by embedded cartridge heaters. The experiments were performed from the convective heat transfer regime to the critical heat flux, with both increasing and decreasing heat flux, at 1.01 bar, and additionally at 2 bar and 4 bar for the emery polished surface. Significant enhancement of heat transfer with increasing surface modification was demonstrated, particularly for the EB enhanced and sintered surfaces. The emery polished and sandblasted surface results are compared with nucleate boiling correlations and other published data.dc201
Gain-clamped L-band EDFA using narrow and broadband fiber Bragg gratings for gain-flattened
In the wavelength division multiplexing (WDM) networks, the signal power in the link is varies with the changes in number of signals and link losses. A sudden signal added/dropped can caused the surviving signal have power transient (Desurvire, 1989; Sun et al., 1997) and when these signal is amplified by the erbium-doped fiber amplifier (EDFA), unequally signal power between channel became larger and causes an error detection at the receiver (Zhou et al., 2000). The increasing demand intended the networks provider to increasing link capacity. At maximum gain bandwidth of C and L band, a single fiber can carry 80 channels data (Scheerer et al., 1999) using gain-flattened EDFA has been reported
Compound effect of EHD and surface roughness in pool boiling and CHF with R-123
This article is a post-print version of the fianl published article which may be accessed at the link below.Saturated pool boiling of R-123 at 1 bar, including the critical heat flux (CHF), was enhanced by modifying the surface characteristics and applying a high intensity electrostatic field, the latter termed electrohydrodynamic (and abbreviated EHD) enhancement. The heat flux was varied from very low values in the natural convection regime up to CHF. Experiments were performed with increasing and decreasing heat flux to study boiling hysteresis without and with EHD. Boiling occurred on the sand blasted surface of a
cylindrical copper block with embedded electrical heating elements, with standardized surface parameter Pa = 3.5 μm. The electric field was generated by a potential of 5 kV to 25 kV, applied through a 40 mm diameter circular electrode of ss-304 wire mesh, aperture size 5.1 mm, located at distances of 5 - 60 mm from the surface, with most of the data obtained for 20 mm. The data for the rough surface were compared with earlier data for a smooth surface and indicated a significant increase in the heat transfer rates. EHD produced a further increase in the heat transfer rates, particularly at low heat flux values and near the CHF. Boiling hysteresis was reduced progressively by EHD and eliminated at high field strength.This work was supported by Government of Pakistan under a scholarship programme
Physical activity level among undergraduate students in Terengganu, Malaysia using pedometer
A cross-sectional study determine physical activity level among 95 undergraduate students at UniSZA using pedometer. Subjects consented and completed socio-demographic details, weight and height were measured. Each subject was supplied with a pedometer and wear it for a week and record steps per day from the pedometer each night before bed. Descriptive statistic and independent T-test coefficient analyze the data using IBM SPSS version 22.0. Results showed that 66.4% of the subjects were classified as sedentary according to pedometer determined physical activity. Males recorded significantly more steps than female per day. Subjects in the age group of 18-20 years old had the highest mean average steps count than the older age group of 21-24 years old and ≥ 25 years old per day. Only 5.2% were classified as active and highly active using pedometer determined physical activity level.Keywords: physical activity; pedometer; steps; body compositio
High-Speed Cylindrical Collapse of Two Perfect Fluids
In this paper, the study of the gravitational collapse of cylindrically
distributed two perfect fluid system has been carried out. It is assumed that
the collapsing speeds of the two fluids are very large. We explore this
condition by using the high-speed approximation scheme. There arise two cases,
i.e., bounded and vanishing of the ratios of the pressures with densities of
two fluids given by . It is shown that the high-speed approximation
scheme breaks down by non-zero pressures when are bounded
below by some positive constants. The failure of the high-speed approximation
scheme at some particular time of the gravitational collapse suggests the
uncertainity on the evolution at and after this time. In the bounded case, the
naked singularity formation seems to be impossible for the cylindrical two
perfect fluids. For the vanishing case, if a linear equation of state is used,
the high-speed collapse does not break down by the effects of the pressures and
consequently a naked singularity forms. This work provides the generalisation
of the results already given by Nakao and Morisawa [1] for the perfect fluid.Comment: 11 pages, 1 figure, accepted for publication in Gen. Rel. Gra
Efficient deep CNN-based fire detection and localization in video surveillance applications
Convolutional neural networks (CNNs) have yielded state-of-the-art performance in image classification and other computer vision tasks. Their application in fire detection systems will substantially improve detection accuracy, which will eventually minimize fire disasters and reduce the ecological and social ramifications. However, the major concern with CNN-based fire detection systems is their implementation in real-world surveillance networks, due to their high memory and computational requirements for inference. In this paper, we propose an original, energy-friendly, and computationally efficient CNN architecture, inspired by the SqueezeNet architecture for fire detection, localization, and semantic understanding of the scene of the fire. It uses smaller convolutional kernels and contains no dense, fully connected layers, which helps keep the computational requirements to a minimum. Despite its low computational needs, the experimental results demonstrate that our proposed solution achieves accuracies that are comparable to other, more complex models, mainly due to its increased depth. Moreover, this paper shows how a tradeoff can be reached between fire detection accuracy and efficiency, by considering the specific characteristics of the problem of interest and the variety of fire data
A New Parametrization of the Seesaw Mechanism and Applications in Supersymmetric Models
We present a new parametrization of the minimal seesaw model, expressing the
heavy-singlet neutrino Dirac Yukawa couplings and Majorana
masses in terms of effective light-neutrino observables and an
auxiliary Hermitian matrix In the minimal supersymmetric version of the
seesaw model, the latter can be related directly to other low-energy
observables, including processes that violate charged lepton flavour and CP.
This parametrization enables one to respect the stringent constraints on
muon-number violation while studying the possible ranges for other observables
by scanning over the allowed parameter space of the model. Conversely, if any
of the lepton-flavour-violating process is observed, this measurement can be
used directly to constrain and As applications, we
study flavour-violating decays and the electric dipole moments of
leptons in the minimal supersymmetric seesaw model.Comment: Important references adde
- …