9 research outputs found

    Comparing results of X-ray diffraction, \ub5-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise

    Get PDF
    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, \ub5-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2 , U 3 O 8 and an intermediate species U 3 O 7 in the third material

    Raman Spectroscopy and Hyperspectral Analysis of Living Cells Exposed to Nanoparticles

    No full text
    Nanoparticles, i.e. particles with at least one dimension smaller than 100 nm, are present in large quantities in ambient air and can also be found in an increasing amount of consumer products. It is known that many nanomaterials have physicochemical properties that differ from physicochemical properties of the same material in bulk size. It is therefore important to characterize nanoparticles and to evaluate their toxicity. To understand mechanisms behind nanotoxicity, it is important to study the uptake of nanoparticles, and how they are accumulated. For these purposes model studies of cellular uptake are useful. In this thesis metal oxide and carbon-based nanoparticles have been studied in living cells using Raman spectroscopy. Raman spectroscopy is a method that facilitates a non-destructive analysis without using any fluorescent labels, or any other specific sample preparation. It is possible to collect Raman images, i.e. images where each pixel corresponds to a Raman spectrum, and to use the spectral information to detect nanoparticles, and to identify organelles in cells. In this thesis the question whether or not nanoparticles can enter the cell nucleus of lung epithelial cells has been addressed using hyperspectral analysis. It is shown that titanium dioxide nanoparticles and iron oxide nanoparticles are taken up by cells, and also in the cell nucleus. In contrast, graphene oxide nanoparticles are mainly found attached on the outside of the cell membrane and very few nanoparticles are found in the cell, and none have been detected in the nucleus. It is concluded that graphene oxide nanoparticles are not cytotoxic. However, a comparison of Raman spectra of biomolecules in cells exposed to graphene oxide, unexposed cells and apoptotic cells, shows that the graphene oxide nanoparticles do affect lipid and protein structures. In this thesis, several multivariate data analysis methods have been used to analyze Raman spectra and Raman images. In addition, super-resolution algorithms, which originally have been developed to improve the resolution in photographic images, were optimized and applied to Raman images of cells exposed to submicron polystyrene particles in living cells

    Raman Spectroscopy and Hyperspectral Analysis of Living Cells Exposed to Nanoparticles

    No full text
    Nanoparticles, i.e. particles with at least one dimension smaller than 100 nm, are present in large quantities in ambient air and can also be found in an increasing amount of consumer products. It is known that many nanomaterials have physicochemical properties that differ from physicochemical properties of the same material in bulk size. It is therefore important to characterize nanoparticles and to evaluate their toxicity. To understand mechanisms behind nanotoxicity, it is important to study the uptake of nanoparticles, and how they are accumulated. For these purposes model studies of cellular uptake are useful. In this thesis metal oxide and carbon-based nanoparticles have been studied in living cells using Raman spectroscopy. Raman spectroscopy is a method that facilitates a non-destructive analysis without using any fluorescent labels, or any other specific sample preparation. It is possible to collect Raman images, i.e. images where each pixel corresponds to a Raman spectrum, and to use the spectral information to detect nanoparticles, and to identify organelles in cells. In this thesis the question whether or not nanoparticles can enter the cell nucleus of lung epithelial cells has been addressed using hyperspectral analysis. It is shown that titanium dioxide nanoparticles and iron oxide nanoparticles are taken up by cells, and also in the cell nucleus. In contrast, graphene oxide nanoparticles are mainly found attached on the outside of the cell membrane and very few nanoparticles are found in the cell, and none have been detected in the nucleus. It is concluded that graphene oxide nanoparticles are not cytotoxic. However, a comparison of Raman spectra of biomolecules in cells exposed to graphene oxide, unexposed cells and apoptotic cells, shows that the graphene oxide nanoparticles do affect lipid and protein structures. In this thesis, several multivariate data analysis methods have been used to analyze Raman spectra and Raman images. In addition, super-resolution algorithms, which originally have been developed to improve the resolution in photographic images, were optimized and applied to Raman images of cells exposed to submicron polystyrene particles in living cells

    Raman Spectroscopy and Hyperspectral Analysis of Living Cells Exposed to Nanoparticles

    No full text
    Nanoparticles, i.e. particles with at least one dimension smaller than 100 nm, are present in large quantities in ambient air and can also be found in an increasing amount of consumer products. It is known that many nanomaterials have physicochemical properties that differ from physicochemical properties of the same material in bulk size. It is therefore important to characterize nanoparticles and to evaluate their toxicity. To understand mechanisms behind nanotoxicity, it is important to study the uptake of nanoparticles, and how they are accumulated. For these purposes model studies of cellular uptake are useful. In this thesis metal oxide and carbon-based nanoparticles have been studied in living cells using Raman spectroscopy. Raman spectroscopy is a method that facilitates a non-destructive analysis without using any fluorescent labels, or any other specific sample preparation. It is possible to collect Raman images, i.e. images where each pixel corresponds to a Raman spectrum, and to use the spectral information to detect nanoparticles, and to identify organelles in cells. In this thesis the question whether or not nanoparticles can enter the cell nucleus of lung epithelial cells has been addressed using hyperspectral analysis. It is shown that titanium dioxide nanoparticles and iron oxide nanoparticles are taken up by cells, and also in the cell nucleus. In contrast, graphene oxide nanoparticles are mainly found attached on the outside of the cell membrane and very few nanoparticles are found in the cell, and none have been detected in the nucleus. It is concluded that graphene oxide nanoparticles are not cytotoxic. However, a comparison of Raman spectra of biomolecules in cells exposed to graphene oxide, unexposed cells and apoptotic cells, shows that the graphene oxide nanoparticles do affect lipid and protein structures. In this thesis, several multivariate data analysis methods have been used to analyze Raman spectra and Raman images. In addition, super-resolution algorithms, which originally have been developed to improve the resolution in photographic images, were optimized and applied to Raman images of cells exposed to submicron polystyrene particles in living cells

    Noise Removal with Maintained Spatial Resolution in Raman Images of Cells Exposed to Submicron Polystyrene Particles

    No full text
    The biodistribution of 300 nm polystyrene particles in A549 lung epithelial cells has been studied with confocal Raman spectroscopy. This is a label-free method in which particles and cells can be imaged without using dyes or fluorescent labels. The main drawback with Raman imaging is the comparatively low spatial resolution, which is aggravated in heterogeneous systems such as biological samples, which in addition often require long measurement times because of their weak Raman signal. Long measurement times may however induce laser-induced damage. In this study we use a super-resolution algorithm with Tikhonov regularization, intended to improve the image quality without demanding an increased number of collected pixels. Images of cells exposed to polystyrene particles have been acquired with two different step lengths, i.e., the distance between pixels, and compared to each other and to corresponding images treated with the super-resolution algorithm. It is shown that the resolution after application of super-resolution algorithms is not significantly improved compared to the theoretical limit for optical microscopy. However, to reduce noise and artefacts in the hyperspectral Raman images while maintaining the spatial resolution, we show that it is advantageous to use short mapping step lengths and super-resolution algorithms with appropriate regularization. The proposed methodology should be generally applicable for Raman imaging of biological samples and other photo-sensitive samples

    Route Determination of Sulfur Mustard Using Nontargeted Chemical Attribution Signature Screening

    No full text
    Route determination of sulfur mustard was accomplished through comprehensive nontargeted screening of chemical attribution signatures. Sulfur mustard samples prepared via 11 different synthetic routes were analyzed using gas chromatography/high-resolution mass spectrometry. A large number of compounds were detected, and multivariate data analysis of the mass spectrometric results enabled the discovery of route-specific signature profiles. The performance of two supervised machine learning algorithms for retrospective synthetic route attribution, orthogonal partial least squares discriminant analysis (OPLS-DA) and random forest (RF), were compared using external test sets. Complete classification accuracy was achieved for test set samples (2/2 and 9/9) by using classification models to resolve the one-step routes starting from ethylene and the thiodiglycol chlorination methods used in the two-step routes. Retrospective determination of initial thiodiglycol synthesis methods in sulfur mustard samples, following chlorination, was more difficult. Nevertheless, the large number of markers detected using the nontargeted methodology enabled correct assignment of 5/9 test set samples using OPLS-DA and 8/9 using RF. RF was also used to construct an 11-class model with a total classification accuracy of 10/11. The developed methods were further evaluated by classifying sulfur mustard spiked into soil and textile matrix samples. Due to matrix effects and the low spiking level (0.05% w/w), route determination was more challenging in these cases. Nevertheless, acceptable classification performance was achieved during external test set validation: chlorination methods were correctly classified for 12/18 and 11/15 in spiked soil and textile samples, respectively.Funding agencies: This work was funded by the Swedish Ministry of Defence and the Swedish Civil Contingencies Agency</p

    Development of an All-Marine 3D Printed Bioactive Hydrogel Dressing for Treatment of Hard-to-Heal Wounds

    No full text
    Current standard wound care involves dressings that provide moisture and protection; however, dressings providing active healing are still scarce and expensive. We aimed to develop an ecologically sustainable 3D printed bioactive hydrogel-based topical wound dressing targeting healing of hard-to-heal wounds, such as chronic or burn wounds, which are low on exudate. To this end, we developed a formulation composed of renewable marine components; purified extract from unfertilized salmon roe (heat-treated X, HTX), alginate from brown seaweed, and nanocellulose from tunicates. HTX is believed to facilitate the wound healing process. The components were successfully formulated into a 3D printable ink that was used to create a hydrogel lattice structure. The 3D printed hydrogel showed a HTX release profile enhancing pro-collagen I alpha 1 production in cell culture with potential of promoting wound closure rates. The dressing has recently been tested on burn wounds in Göttingen minipigs and shows accelerated wound closure and reduced inflammation. This paper describes the dressings development, mechanical properties, bioactivity, and safety
    corecore