49 research outputs found
The pathogenic role of coronary microvascular dysfunction in the setting of other cardiac or systemic conditions.
Coronary microvascular dysfunction (CMD) plays a pathogenic role in cardiac and systemic conditions other than microvascular angina. In this review we provide an overview of the pathogenic role of CMD in the setting of diabetes mellitus, obesity, hypertensive pregnancy disorders, chronic inflammatory and autoimmune rheumatic disorders, chronic kidney disease, hypertrophic cardiomyopathy, and aortic valve stenosis. In these various conditions, CMD results from different structural, functional and/or dynamic alterations in the coronary microcirculation associated with the primary disease process. CMD is often detectable very early in the course of the primary disease, before clinical symptoms or signs of myocardial ischaemia are present, and it portrays an increased risk for cardiovascular events
Sex differences in arterial hypertension.
There is strong evidence that sex chromosomes and sex hormones influence blood pressure (BP) regulation, distribution of cardiovascular (CV) risk factors and co-morbidities differentially in females and males with essential arterial hypertension. The risk for CV disease increases at a lower BP level in females than in males, suggesting that sex-specific thresholds for diagnosis of hypertension may be reasonable. However, due to paucity of data, in particularly from specifically designed clinical trials, it is not yet known whether hypertension should be differently managed in females and males, including treatment goals and choice and dosages of antihypertensive drugs. Accordingly, this consensus document was conceived to provide a comprehensive overview of current knowledge on sex differences in essential hypertension including BP development over the life course, development of hypertension, pathophysiologic mechanisms regulating BP, interaction of BP with CV risk factors and co-morbidities, hypertension-mediated organ damage in the heart and the arteries, impact on incident CV disease, and differences in the effect of antihypertensive treatment. The consensus document also highlights areas where focused research is needed to advance sex-specific prevention and management of hypertension
Defining appropriateness in coach-athlete sexual relationships: The voice of coaches
The sporting culture, with omnipotent coaches, fierce competition for recognition and funding, and ‘win at all cost’ ethos, creates an environment conducive to sexual exploitation of athletes. Recent increased public awareness and the development of child protection policies in sport have led to the questioning of previously accepted coach-athlete relationships. This study is an exploratory investigation into male swimming coaches’ perceptions of appropriateness of coach-athlete sexual relationships. Sexual relationships with athletes under the age of 16 were unanimously considered totally inappropriate. With regard to sexual relationships with athletes above the age of consent for heterosexual sex, opinions ranged from “totally inappropriate” to “it’s a question of civil liberties.” These results are discussed in relation to how coaches have adapted their own behaviours in the face of public scrutiny but are still reluctant to restrict the rights of their fellow coaches
Recommended from our members
Hepcidin-mediated hypoferremia disrupts immune responses to vaccination and infection
Background: How specific nutrients influence adaptive immunity is of
broad interest. Iron deficiency is the most common micronutrient deficiency worldwide and imparts a significant burden of global disease;
however, its effects on immunity remain unclear.
Methods: We used a hepcidin mimetic and several genetic models to
examine the effect of low iron availability on T cells in vitro and on immune responses to vaccines and viral infection in mice. We examined
humoral immunity in human patients with raised hepcidin and low
serum iron caused by mutant TMPRSS6. We tested the effect of iron
supplementation on vaccination-induced humoral immunity in piglets,
a natural model of iron deficiency.
Findings: We show that low serum iron (hypoferremia), caused by
increased hepcidin, severely impairs effector and memory responses
to immunizations. The intensified metabolism of activated lymphocytes
requires the support of enhanced iron acquisition, which is facilitated by
IRP1/2 and TFRC. Accordingly, providing extra iron improved the
response to vaccination in hypoferremic mice and piglets, while
conversely, hypoferremic humans with chronically increased hepcidin
have reduced concentrations of antibodies specific for certain pathogens. Imposing hypoferremia blunted the T cell, B cell, and neutralizing
antibody responses to influenza virus infection in mice, allowing the virus to persist and exacerbating lung inflammation and morbidity.
Conclusions: Hypoferremia, a well-conserved physiological innate
response to infection, can counteract the development of adaptive immunity. This nutrient trade-off is relevant for understanding and
improving immune responses to infections and vaccines in the globally
common contexts of iron deficiency and inflammatory disorders
Hypertension in pregnancy: an update
abstract not availbal