635 research outputs found

    Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells.

    Get PDF
    BackgroundCobalt oxide nanoparticles (Co(3)O(4)NPs) are increasingly recognized for their utility in biological applications, magnetic resonance imaging, and drug delivery. However, little is known about the toxicity of Co(3)O(4)NPs in human cells.MethodsWe investigated the possible mechanisms of genotoxicity induced by Co(3)O(4)NPs in human hepatocarcinoma (HepG2) cells. Cell viability, reactive oxygen species (ROS), glutathione, thiobarbituric acid reactive substance, apoptosis, and DNA damage were assessed in HepG2 cells after Co(3)O(4)NPs and Co(2+) exposure.ResultsCo(3)O(4)NPs elicited a significant (P < 0.01) reduction in glutathione with a concomitant increase in lipid hydroperoxide, ROS generation, superoxide dismutase, and catalase activity after 24- and 48-hour exposure. Co(3)O(4)NPs had a mild cytotoxic effect in HepG2 cells; however, it induced ROS and oxidative stress, leading to DNA damage, a probable mechanism of genotoxicity. The comet assay showed a statistically significant (P < 0.01) dose- and time-related increase in DNA damage for Co(3)O(4)NPs, whereas Co(2+) induced less change than Co(3)O(4)NPs but significantly more than control.ConclusionOur results demonstrated that Co(3)O(4)NPs induced cytotoxicity and genotoxicity in HepG2 cells through ROS and oxidative stress

    Half-metallic magnetism in Ti3Co5-xFexB2

    Get PDF
    Bulk alloys and thin films of Fe-substituted Ti3Co5B2 have been investigated by first-principle density-functional calculations. The series, which is of interest in the context of alnico magnetism and spin electronics, has been experimentally realized in nanostructures but not in the bulk. Our bulk calculations predict paramagnetism for Ti3Co5B2, Ti3Co4FeB2 and Ti3CoFe4B2, whereas Ti3Fe5B2 is predicted to be ferromagnetic. The thin films are all ferromagnetic, indicating that moment formation may be facilitated at nanostructural grain boundaries. One member of the thin-film series, namely Ti3CoFe4B2, is half-metallic and exhibits perpendicular easy-axis magnetic anisotropy. The half-metallicity reflects the hybridization of the Ti, Fe and Co 3d orbitals, which causes a band gap in minority spin channel, and the limited equilibrium solubility of Fe in bulk Ti3Co5B2 may be linked to the emerging half metallicity due to Fe substitution

    Ensemble-based machine learning algorithms for classifying breast tissue based on electrical impedance spectroscopy

    Get PDF
    The initial identification of breast cancer and the prediction of its category have become a requirement in cancer research because they can simplify the subsequent clinical management of patients. The application of artificial intelligence techniques (e.g., machine learning and deep learning) in medical science is becoming increasingly important for intelligently transforming all available information into valuable knowledge. Therefore, we aimed to classify six classes of freshly excised tissues from a set of electrical impedance measurement variables using five ensemble-based machine learning (ML) algorithms, namely, the random forest (RF), extremely randomized trees (ERT), decision tree (DT), gradient boosting tree (GBT) and AdaBoost (Adaptive Boosting) (ADB) algorithms, which can be subcategorized as bagging and boosting methods. In addition, the ranked order of the variables based on their importance differed across the ML algorithms. The results demonstrated that the three bagging ensemble ML algorithms, namely, RF ERT and DT, yielded better classification accuracies (78–86%) compared with the two boosting algorithms, GBT and ADB (60–75%). We hope that these our results would help improve the classification of breast tissue to allow the early prediction of cancer susceptibility

    Impact of nurse-led, multidisciplinary home-based intervention on event-free survival across the spectrum of chronic heart disease

    Get PDF
    Background: We sought to determine the overall impact of a nurse-led, multidisciplinary home-based intervention (HBI) adapted to hospitalized patients with chronic forms of heart disease of varying types. Methods and Results: Prospectively planned, combined, secondary analysis of 3 randomized trials (1226 patients) of HBI were compared with standard management. Hospitalized patients presenting with heart disease but not heart failure, atrial fibrillation but not heart failure, and heart failure, as well, were recruited. Overall, 612 and 614 patients, respectively, were allocated to a home visit 7 to 14 days postdischarge by a cardiac nurse with follow-up and multidisciplinary support according to clinical need or standard management. The primary outcome of days-alive and out-of-hospital was examined on an intention-to-treat basis. During 1371 days (interquartile range, 1112-1605) of follow-up, 218 patients died and 17 917 days of hospital stay were recorded. In comparison with standard management, HBI patients achieved significantly prolonged event-free survival (90.1% [95% confidence interval, 88.2-92.0] versus 87.2% [95% confidence interval, 85.1-89.3] days-alive and out-of-hospital; P=0.020). This reflected less all-cause mortality (adjusted hazard ratio, 0.67; 95% confidence interval, 0.50-0.88; P=0.005) and unplanned hospital stay (median, 0.22 [interquartile range, 0-1.3] versus 0.36 [0-2.1] days/100 days follow-up; P=0.011). Analyses of the differential impact of HBI on all-cause mortality showed significant interactions (characterized by U-shaped relationships) with age (P=0.005) and comorbidity (P=0.041); HBI was most effective for those aged 60 to 82 years (59%-65% of individual trial cohorts) and with a Charlson Comorbidity Index Score of 5 to 8 (36%-61%).Conclusions: These data provide further support for the application of postdischarge HBI across the full spectrum of patients being hospitalized for chronic forms of heart disease.Simon Stewart, Joshua F. Wiley, Jocasta Ball, Yih-Kai Chan, Yasmin Ahamed, David R. Thompson, Melinda J. Carringto

    Neuronal pentraxin 1: A synaptic-derived plasma biomarker in Alzheimer's disease

    Get PDF
    Synaptic neurodegeneration is thought to be an early event initiated by soluble β-amyloid (Aβ) aggregates that closely correlates with cognitive decline in Alzheimer disease (AD). Apolipoprotein ε4 (APOE4) is the most common genetic risk factor for both familial AD (FAD) and sporadic AD; it accelerates Aβ aggregation and selectively impairs glutamate receptor function and synaptic plasticity. However, its molecular mechanisms remain elusive and these synaptic deficits are difficult to monitor. AD- and APOE4-dependent plasma biomarkers have been proposed, but synapse-related plasma biomarkers are lacking. We evaluated neuronal pentraxin 1 (NP1), a potential CNS-derived plasma biomarker of excitatory synaptic pathology. NP1 is preferentially expressed in brain and involved in glutamate receptor internalization. NP1 is secreted presynaptically induced by Aβ oligomers, and implicated in excitatory synaptic and mitochondrial deficits. Levels of NP1 and its fragments were increased in a correlated fashion in both brain and plasma of 7–8 month-old E4FAD mice relative to E3FAD mice. NP1 was also found in exosome preparations and reduced by dietary DHA supplementation. Plasma NP1 was higher in E4FAD+ (APOE4+/+/FAD+/−) relative to E4FAD- (non-carrier; APOE4+/+/FAD−/−) mice, suggesting NP1 is modulated by Aβ expression. Finally, relative to normal elderly, plasma NP1 was also elevated in patients with mild cognitive impairment (MCI) and elevated further in the subset who progressed to early-stage AD. In those patients, there was a trend towards increased NP1 levels in APOE4 carriers relative to non-carriers. These findings indicate that NP1 may represent a potential synapse-derived plasma biomarker relevant to early alterations in excitatory synapses in MCI and early-stage AD

    Genotoksičnost metalnih nanočestica: osvrt na podatke istraživanja In vivo

    Get PDF
    With increasing production and application of a variety of nanomaterials (NMs), research on their cytotoxic and genotoxic potential grows, as the exposure to these nano-sized materials may potentially result in adverse health effects. In large part, indications for potential DNA damaging effects of nanoparticles (NPs) originate from inconsistent in vitro studies. To clarify these effects, the implementation of in vivo studies has been emphasised. This paper summarises study results of genotoxic effects of NPs, which are available in the recent literature. They provide indications that some NP types cause both DNA strand breaks and chromosomal damages in experimental animals. Their genotoxic effects, however, do not depend only on particle size, surface modifi cation (particle coating), and exposure route, but also on exposure duration. Currently available animal studies may suggest differing mechanisms (depending on the duration of exposure) by which living organisms react to NP contact. Nevertheless, due to considerable inconsistencies in the recent literature and the lack of standardised test methods - a reliable hazard assessment of NMs is still limited. Therefore, international organisations (e.g. NIOSH) suggest utmost caution when potential exposure of humans to NMs occurs, as long as evidence of their toxicological and genotoxic effect(s) is limited.S povećanjem proizvodnje i primjene niza različitih nanomaterijala (NM) raste i potreba istraživanja njihovih mogućih citotoksičnih i genotoksičnih učinaka kao i drugih štetnih učinaka na zdravlje u uvjetima profesionalne ili opće izloženost ljudi. Indikacije potencijanog oštećenja DNA kojeg uzrokuju nanočestice u velikoj mjeri proizlaze iz nedosljednih in vitro ispitivanja. Kako bi se razjasnili ti učinci, naglašena je potreba provedbe in vivo ispitivanja. Ovaj pregledni rad sažima rezultate procjene genotoksičnih učinaka nanočestica koji su objavljeni u novijoj stručnoj i znanstvenoj literaturi. Navedeni rezultati pokazuju da određene nanočestice uzrokuju lomove u molekuli DNA i oštećuju kromosome u eksperimentalnim životinjama. Njihovi genotoksični učinci ne ovise samo o veličini čestice, modifi kaciji površine (oblaganje čestice) i načinu izlaganja, već i o trajanju izloženosti nanočesticama. Postojeća istraživanja provedena na životinjama upućuju na različite mehanizme koji ovise o trajanju izlaganja i pomoću kojih živi organizmi reagiraju na doticaj s nanočesticama. Međutim postoje brojne nedosljednosti u novijoj literaturi, a standardne testne metode nisu dostupne pa je stoga pouzdanija procjena opasnosti od izlaganja nanomaterijalima u ljudi još uvijek veoma ograničena. Stoga se u međunarodnim dokumentima savjetuje oprez prilikom svakog izlaganja ljudi nanomaterijalima kako bi se spriječili mogući opći toksični genotoksični učinci

    Prosopis juliflora leave extracts induce cell death of MCF-7, HepG2, and LS-174T cancer cell lines

    Get PDF
    Prosopis juliflora (P. juliflora) is a widespread phreatophytic tree, which belongs to the Fabaceae family. The goal of the present study is to investigate the potential anti-cancer effect of P. juliflora leave extracts and to identify its chemical composition. For this purpose, MCF-7 (breast), HepG2 (liver), and LS-174T (colorectal) cancer cell lines were cultivated and incubated with various concentrations of P. juliflora leave extracts, and its impact on cell viability, proliferation, and cell cycle stages was investigated. P. juliflora leave extracts induced concentration-dependent cytotoxicity against all tested cancer cell lines. The calculated IC50 was 18.17, 33.1 and 41.9 μg/ml for MCF-7, HePG2 and LS-174T, respectively. Detailed analysis revealed that the cytotoxic action of P. juliflora extracts was mainly via necrosis but not apoptosis. Moreover, DNA content flow cytometry analysis showed cell-specific anti-proliferative action and cell cycle stages arrest. In order to identify the anti-cancer constituents of P. juliflora, the ethyl extracts were analyzed by liquid chromatography-mass spectrometry. The major constituents identified in the ethyl extracts of P. juliflora leaves were hydroxymethyl-pyridine, nicotinamide, adenine, and poly-(methyl methacrylate) (PMMA). In conclusion, P. juliflora ethyl acetate extracts have a potential anti-cancer effect against breast adenocarcinoma, hepatocellular carcinoma, and colorectal adenocarcinoma, and is enriched with anti-cancer constituents

    An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    Get PDF
    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles

    Protective Ag :TiO2 thin films for pressure sensors in orthopedic prosthesis: the importance of composition, structural and morphological features on the biological response of the coatings

    Get PDF
    DC reactive magnetron sputtered Ag:TiO2 nanocomposite thin films were developed to be used as protective coatings in pressure sensor devices. The coatings, with Ag content varying from 0 to about 30 at.%, were prepared and characterized in order to study their biological response. The as-deposited samples were annealed in vacuum at 500 °C in order to evaluate the influence of their morphological and structural differences over the response elicited upon contact with simulated bodily fluids and cultured human cells, as well as selected microorganisms. The results showed that the annealing treatment produced less porous films with an enhanced structure, with a significant reduction in structural defects and improved crystallinity. Additionally, samples with higher Ag contents (≥12.8 at.%) exhibited Ag agglomerates/clusters at the surface, a result anticipated from the XRD data. The crystallization of the TiO2 matrix was also observed by XRD analysis, albeit delayed by the dispersion of Ag into the matrix. Biological characterization showed that the antimicrobial activity and cytotoxicity of the coatings were directly related with their composition, closely followed by the particular structural and morphological features, namely those resulting from annealing process.This research is partially sponsored by FEDER funds through the program COMPETE—Programa Operacional Factores de Competitividade and by national funds through FCT—Fundação para a Ciência e a Tecnologia, under the projects PEst-C/EME/UI0285/2011, PTDC/SAU-ENB/116850/2010, PTDC/CTM-NAN/112574/2009P. T Matamá acknowledges FCT for Grant SFRH/BPD/47555/2008
    corecore