40 research outputs found

    Evaluation of soil properties of the Sudan Savannah ecological zone of Ghana for crop production

    Get PDF
    Low soil fertility and limited ability of farmers to purchase fertilizers in the Sudan savannah zone of Ghana has resulted in the decline in the yield of cereals over the years. There is, therefore, the need to identify soil parameters that are critical to crop production, to manage them effectively and improve fertilizer use efficiency to increase crop yield. To achieve this, an area of about 1.5 km2 was divided into grid cells (100m2) and characterised for their soil properties (organic carbon, pH, and soil texture). Data collected was used in a pedo-transfer function to estimate additional soil parameters that were not measured (i.e. wilting point, field capacity, available water and saturation). These were used as input to the crop simulation model (APSIM- Agriculture Productions Systems sIMulator) to simulate sorghum grain yield for each grid cell. Linear regression and factor analysis were also employed in explaining the data. Grain yield ranged from 402 to 1092 kg ha-1 with a mean of 673 kg ha-1 using 2005 weather data and 228 to 907 kg ha-1 with a mean of 427 kg ha-1 using 2000 weather data without fertilizer application. The model was sensitive to all input parameters. Soil texture and organic carbon were identified to have significant effect on crop yield. Soil organic carbon is, therefore, to be managed for the development of a good tilth and hence sustainable yields of sorghum at the study site

    Gametocyte Development and Carriage in Ghanaian Individuals with Uncomplicated Plasmodium falciparum Malaria.

    Get PDF
    Plasmodium falciparum gametocytes develop over 9-12 days while sequestered in deep tissues. On emergence into the bloodstream, they circulate for varied amounts of time during which certain host factors might influence their further development. We aimed to evaluate the potential association of patient clinical parameters with gametocyte development and carriage via in vivo methods. Seventy-two patients were enrolled from three hospitals in the Volta region of Ghana in 2016. Clinical parameters were documented for all patients, and gametocyte prevalence by microscopy was estimated at 12.5%. By measuring RNA transcripts representing two distinct gametocyte developmental stages using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), we obtained a more precise estimate of gametocyte carriage while also inferring gametocyte maturation. Fifty-three percent of the study participants harbored parasites expressing transcripts of the immature gametocyte-specific gene (PF3D7_1477700), whereas 36% harbored PF3D7_1438800 RNA-positive parasites, which is enriched in mid and mature gametocytes, suggesting the presence of more immature stages. Linear logistic regression showed that patients older than 5 years but less than 16 years were more likely to carry gametocytes expressing both PF3D7_1477700 and PF3D7_1438800 compared with younger participants, and gametocytemia was more likely in mildly anemic individuals compared with those with severe/moderate anemia. These data provide further evidence that a greater number of malaria patients harbor gametocytes than typically estimated by microscopy and suggest a possible association between age, fever, anemia, and gametocytemia

    A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions

    Get PDF
    Conservation agriculture involves reduced tillage, permanent soil cover and crop rotations to enhance soil fertility and to supply food from a dwindling land resource. Recently, conservation agriculture has been promoted in Southern Africa, mainly for maize-based farming systems. However, maize yields under rain-fed conditions are often variable. There is therefore a need to identify factors that influence crop yield under conservation agriculture and rain-fed conditions. Here, we studied maize grain yield data from experiments lasting 5 years and more under rain-fed conditions. We assessed the effect of long-term tillage and residue retention on maize grain yield under contrasting soil textures, nitrogen input and climate. Yield variability was measured by stability analysis. Our results show an increase in maize yield over time with conservation agriculture practices that include rotation and high input use in low rainfall areas. But we observed no difference in system stability under those conditions. We observed a strong relationship between maize grain yield and annual rainfall. Our meta-analysis gave the following findings: (1) 92% of the data show that mulch cover in high rainfall areas leads to lower yields due to waterlogging; (2) 85% of data show that soil texture is important in the temporal development of conservation agriculture effects, improved yields are likely on well-drained soils; (3) 73% of the data show that conservation agriculture practices require high inputs especially N for improved yield; (4) 63% of data show that increased yields are obtained with rotation but calculations often do not include the variations in rainfall within and between seasons; (5) 56% of the data show that reduced tillage with no mulch cover leads to lower yields in semi-arid areas; and (6) when adequate fertiliser is available, rainfall is the most important determinant of yield in southern Africa. It is clear from our results that conservation agriculture needs to be targeted and adapted to specific biophysical conditions for improved impact

    Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.

    Get PDF
    Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a ‘pathway models’, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases

    The critical need for pooled data on coronavirus disease 2019 in African children : an AFREhealth call for action through multicountry research collaboration

    Get PDF
    Globally, there are prevailing knowledge gaps in the epidemiology, clinical manifestations, and outcomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among children and adolescents; and these gaps are especially wide in African countries. The availability of robust age-disaggregated data is a critical first step in improving knowledge on disease burden and manifestations of coronavirus disease 2019 (COVID-19) among children. Furthermore, it is essential to improve understanding of SARS-CoV-2 interactions with comorbidities and coinfections such as human immunodeficiency virus (HIV), tuberculosis, malaria, sickle cell disease, and malnutrition, which are highly prevalent among children in sub-Saharan Africa. The African Forum for Research and Education in Health (AFREhealth) COVID-19 Research Collaboration on Children and Adolescents is conducting studies across Western, Central, Eastern, and Southern Africa to address existing knowledge gaps. This consortium is expected to generate key evidence to inform clinical practice and public health policy-making for COVID-19 while concurrently addressing other major diseases affecting children in African countries.The US National Institutes of Health (NIH)/ Fogarty International Centre (FIC) to the African Forum for Research and Education in Health (AFREhealth).https://academic.oup.com/cidam2022Paediatrics and Child Healt

    Microsoft Word - jeas_0913_951.doc

    No full text
    ABSTRACT The Sumampa stream is located in the Municipal capital of Mampong-Ashanti in the forest-savannah agroecological zone of the Ashanti Region in Ghana. The study investigated the changes in the flashiness of the Sumampa stream as a result of increasing human activities in the catchment by assessing the stream's pathlength and RichardsBaker's new flashiness Index (R-B Index), annual and decadal variation in the flashiness Index using daily flow data from 1985 to 2009. The daily flow data was generated from the stream's daily stage data using the stream's rating curve developed by the Department of Hydrology, Kumasi, Ghana. The landuse change scenarios and the rainfall trend coupled with 43.8% of catchment land on 5-10 o slope represent a potentially high erosion risk and an important factor to influence flashiness in a fast expanding urban catchment

    Wireless, Battery-Free Implants for Electrochemical Catecholamine Sensing and Optogenetic Stimulation

    No full text
    Neurotransmitters and neuromodulators mediate communication between neurons and other cell types; knowledge of release dynamics is critical to understanding their physiological role in normal and pathological brain function. Investigation into transient neurotransmitter dynamics has largely been hindered due to electrical and material requirements for electrochemical stimulation and recording. Current systems require complex electronics for biasing and amplification and rely on materials that offer limited sensor selectivity and sensitivity. These restrictions result in bulky, tethered, or battery-powered systems impacting behavior and that require constant care of subjects. To overcome these challenges, we demonstrate a fully implantable, wireless, and battery-free platform that enables optogenetic stimulation and electrochemical recording of catecholamine dynamics in real time. The device is nearly 1/10th the size of previously reported examples and includes a probe that relies on a multilayer electrode architecture featuring a microscale light emitting diode (μ-LED) and a carbon nanotube (CNT)-based sensor with sensitivities among the highest recorded in the literature (1264.1 nA μM-1 cm-2). High sensitivity of the probe combined with a center tapped antenna design enables the realization of miniaturized, low power circuits suitable for subdermal implantation even in small animal models such as mice. A series of in vitro and in vivo experiments highlight the sensitivity and selectivity of the platform and demonstrate its capabilities in freely moving, untethered subjects. Specifically, a demonstration of changes in dopamine concentration after optogenetic stimulation of the nucleus accumbens and real-time readout of dopamine levels after opioid and naloxone exposure in freely behaving subjects highlight the experimental paradigms enabled by the platform.Fil: Stuart, Tucker. University of Arizona; Estados UnidosFil: Jeang, William J.. Northwestern University; Estados UnidosFil: Slivicki, Richard A.. University of Washington; Estados UnidosFil: Brown, Bobbie J.. University of Washington; Estados UnidosFil: Burton, Alex. University of Arizona; Estados UnidosFil: Brings, Victoria E.. University of Washington; Estados UnidosFil: Agyare, Prophecy. Northwestern University; Estados UnidosFil: Alarcon Segovia, Lilian Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Ruiz, Savanna. Northwestern University; Estados UnidosFil: Tyree, Amanda. University of Arizona; Estados UnidosFil: Pruitt, Lindsay. University of Arizona; Estados UnidosFil: Madhvapathy, Surabhi. Northwestern University; Estados UnidosFil: Niemiec, Martin. University of Arizona; Estados UnidosFil: Zhuang, James. University of Arizona; Estados UnidosFil: Krishnan, Siddharth. Northwestern University; Estados UnidosFil: Copits, Bryan A.. University of Washington; Estados UnidosFil: Rogers, John A.. Northwestern University; Estados UnidosFil: Gereau, Robert W.. Washington University in St. Louis; Estados UnidosFil: Samineni, Vijay K.. University of Washington; Estados UnidosFil: Bandodkar, Amay J.. No especifíca;Fil: Gutruf, Philipp. University of Arizona; Estados Unido
    corecore