4,342 research outputs found

    Landau parameters for isospin asymmetric nuclear matter based on a relativistic model of composite and finite extension nucleons

    Get PDF
    We study the properties of cold asymmetric nuclear matter at high density, applying the quark meson coupling model with excluded volume corrections in the framework of the Landau theory of relativistic Fermi liquids. We discuss the role of the finite spatial extension of composite baryons on dynamical and statistical properties such as the Landau parameters, the compressibility, and the symmetry energy. We have also calculated the low lying collective eigenfrequencies arising from the collisionless quasiparticle transport equation, considering both unstable and stable modes. An overall analysis of the excluded volume correlations on the collective properties is performed.Comment: 24 pages, 6 figure

    Anthropic reasoning in multiverse cosmology and string theory

    Get PDF
    Anthropic arguments in multiverse cosmology and string theory rely on the weak anthropic principle (WAP). We show that the principle, though ultimately a tautology, is nevertheless ambiguous. It can be reformulated in one of two unambiguous ways, which we refer to as WAP_1 and WAP_2. We show that WAP_2, the version most commonly used in anthropic reasoning, makes no physical predictions unless supplemented by a further assumption of "typicality", and we argue that this assumption is both misguided and unjustified. WAP_1, however, requires no such supplementation; it directly implies that any theory that assigns a non-zero probability to our universe predicts that we will observe our universe with probability one. We argue, therefore, that WAP_1 is preferable, and note that it has the benefit of avoiding the inductive overreach characteristic of much anthropic reasoning.Comment: 7 pages. Expanded discussion of selection effects and some minor clarifications, as publishe

    General Relativistic Radiant Shock Waves in the Post-Quasistatic Approximation

    Get PDF
    An evolution of radiant shock wave front is considered in the framework of a recently presented method to study self-gravitating relativistic spheres, whose rationale becomes intelligible and finds full justification within the context of a suitable definition of the post-quasistatic approximation. The spherical matter configuration is divided into two regions by the shock and each side of the interface having a different equation of state and anisotropic phase. In order to simulate dissipation effects due to the transfer of photons and/or neutrinos within the matter configuration, we introduce the flux factor, the variable Eddington factor and a closure relation between them. As we expected the strength of the shock increases the speed of the fluid to relativistic values and for some critical ones is larger than light speed. In addition, we find that energy conditions are very sensible to the anisotropy, specially the strong one. As a special feature of the model, we find that the contribution of the matter and radiation to the radial pressure are the same order of magnitude as in the mant as in the core, moreover, in the core radiation pressure is larger than matter pressure.Comment: To appear in Journal of Physics:Conference Series:"XXIX Spanish Relativity Meeting (ERE 2006): Einstein's Legacy: From the Theoretical Paradise to Astrophysical Observations

    Spin-1/2 "bosons" with mass dimension 3/2 and fermions with mass dimension 1 cannot represent physical particle states

    Get PDF
    We delve into the first principles of quantum field theory to prove that the so-called spin-1/2 "bosons" and the fermions with mass dimension 1, including ELKO, cannot represent physical particle states with spin 1/2. Specifically, we first demonstrate that both aforementioned fields are not invariant under rotational symmetry, which implies that the particles created for these fields are not eigenstates of the spin operator in the (1/2, 0) circle plus (0, 1/2) representation of the Lorentz group, nor is it possible to construct a Hamiltonian density scalar under the rotational group from them. Furthermore, following Weinberg's approach to local causal fields, we prove that regardless of any discrete symmetry or adjoint structure, the relativistic fields in the (1/2, 0) circle plus (0, 1/2) representation satisfy the Fermi-Dirac statistics in complete agreement with the well-established spin-statistics theorem and experimental results.Peer reviewe

    Ingested insecticide to control Aedes aegypti: developing a novel dried attractive toxic sugar bait device for intra-domiciliary control

    No full text
    © 2020 The Author(s). Background: Illnesses transmitted by Aedes aegypti (Linnaeus, 1762) such as dengue, chikungunya and Zika comprise a considerable global burden; mosquito control is the primary public health tool to reduce disease transmission. Current interventions are inadequate and insecticide resistance threatens the effectiveness of these options. Dried attractive bait stations (DABS) are a novel mechanism to deliver insecticide to Ae. aegypti. The DABS are a high-contrast 28 inch2 surface coated with dried sugar-boric acid solution. Aedes aegypti are attracted to DABS by visual cues only, and the dried sugar solution elicits an ingestion response from Ae. aegypti landing on the surface. The study presents the development of the DABS and tests of their impact on Ae. aegypti mortality in the laboratory and a series of semi-field trials. Methods: We conducted multiple series of laboratory and semi-field trials to assess the survivability of Ae. aegypti mosquitoes exposed to the DABS. In the laboratory experiments, we assessed the lethality, the killing mechanism, and the shelf life of the device through controlled experiments. In the semi-field trials, we released laboratory-reared female Ae. aegypti into experimental houses typical of peri-urban tropical communities in South America in three trial series with six replicates each. Laboratory experiments were conducted in Quito, Ecuador, and semi-field experiments were conducted in Machala, Ecuador, an area with abundant wild populations of Ae. aegypti and endemic arboviral transmission. Results: In the laboratory, complete lethality was observed after 48 hours regardless of physiological status of the mosquito. The killing mechanism was determined to be through ingestion, as the boric acid disrupted the gut of the mosquito. In experimental houses, total mosquito mortality was greater in the treatment house for all series of experiments (P \u3c 0.0001). Conclusions: The DABS devices were effective at killing female Ae. aegypti under a variety of laboratory and semi-field conditions. DABS are a promising intervention for interdomiciliary control of Ae. aegypti and arboviral disease prevention.[Figure not available: see fulltext.

    Measuring Galaxy Clustering and the Evolution of [C II] Mean Intensity with Far-IR Line Intensity Mapping during 0.5 < z < 1.5

    Get PDF
    Infrared fine-structure emission lines from trace metals are powerful diagnostics of the interstellar medium in galaxies. We explore the possibility of studying the redshifted far-IR fine-structure line emission using the three-dimensional (3-D) power spectra obtained with an imaging spectrometer. The intensity mapping approach measures the spatio-spectral fluctuations due to line emission from all galaxies, including those below the individual detection threshold. The technique provides 3-D measurements of galaxy clustering and moments of the galaxy luminosity function. Furthermore, the linear portion of the power spectrum can be used to measure the total line emission intensity including all sources through cosmic time with redshift information naturally encoded. Total line emission, when compared to the total star formation activity and/or other line intensities reveals evolution of the interstellar conditions of galaxies in aggregate. As a case study, we consider measurement of [CII] autocorrelation in the 0.5 < z < 1.5 epoch, where interloper lines are minimized, using far-IR/submm balloon-borne and future space-borne instruments with moderate and high sensitivity, respectively. In this context, we compare the intensity mapping approach to blind galaxy surveys based on individual detections. We find that intensity mapping is nearly always the best way to obtain the total line emission because blind, wide-field galaxy surveys lack sufficient depth and deep pencil beams do not observe enough galaxies in the requisite luminosity and redshift bins. Also, intensity mapping is often the most efficient way to measure the power spectrum shape, depending on the details of the luminosity function and the telescope aperture

    `Pure' Supernovae and Accelerated Expansion of the Universe

    Full text link
    A special class of type Ia supernovae that is not subject to ordinary and additional intragalactic gray absorption and chemical evolution has been identified. Analysis of the Hubble diagrams constructed for these supernovae confirms the accelerated expansion of the Universe irrespective of the chemical evolution and possible gray absorption in galaxies.Comment: 2 figures, 1 tabl

    A status report on the observability of cosmic bubble collisions

    Full text link
    In the picture of eternal inflation as driven by a scalar potential with multiple minima, our observable universe resides inside one of many bubbles formed from transitions out of a false vacuum. These bubbles necessarily collide, upsetting the homogeneity and isotropy of our bubble interior, and possibly leading to detectable signatures in the observable portion of our bubble, potentially in the Cosmic Microwave Background or other precision cosmological probes. This constitutes a direct experimental test of eternal inflation and the landscape of string theory vacua. Assessing this possibility roughly splits into answering three questions: What happens in a generic bubble collision? What observational effects might be expected? How likely are we to observe a collision? In this review we report the current progress on each of these questions, improve upon a few of the existing results, and attempt to lay out directions for future work.Comment: Review article; comments very welcome. 24 pages + 4 appendices; 19 color figures. (Revised version adds two figures, minor edits.

    A first order hyperbolic framework for large strain computational solid dynamics. Part I: Total Lagrangian isothermal elasticity

    Get PDF
    This paper introduces a new computational framework for the analysis of large strain fast solid dynamics. The paper builds upon previous work published by the authors (Gil etal., 2014) [48], where a first order system of hyperbolic equations is introduced for the simulation of isothermal elastic materials in terms of the linear momentum, the deformation gradient and its Jacobian as unknown variables. In this work, the formulation is further enhanced with four key novelties. First, the use of a new geometric conservation law for the co-factor of the deformation leads to an enhanced mixed formulation, advantageous in those scenarios where the co-factor plays a dominant role. Second, the use of polyconvex strain energy functionals enables the definition of generalised convex entropy functions and associated entropy fluxes for solid dynamics problems. Moreover, the introduction of suitable conjugate entropy variables enables the derivation of a symmetric system of hyperbolic equations, dual of that expressed in terms of conservation variables. Third, the new use of a tensor cross product [61] greatly facilitates the algebraic manipulations of expressions involving the co-factor of the deformation. Fourth, the development of a stabilised Petrov-Galerkin framework is presented for both systems of hyperbolic equations, that is, when expressed in terms of either conservation or entropy variables. As an example, a polyconvex Mooney-Rivlin material is used and, for completeness, the eigen-structure of the resulting system of equations is studied to guarantee the existence of real wave speeds. Finally, a series of numerical examples is presented in order to assess the robustness and accuracy of the new mixed methodology, benchmarking it against an ample spectrum of alternative numerical strategies, including implicit multi-field Fraeijs de Veubeke-Hu-Washizu variational type approaches and explicit cell and vertex centred Finite Volume schemes
    • 

    corecore