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Abstract We delve into the first principles of quantum field
theory to prove that the so-called spin-1/2 “bosons” and the
fermions with mass dimension 1, including ELKO, cannot
represent physical particle states with spin 1/2. Specifically,
we first demonstrate that both aforementioned fields are not
invariant under rotational symmetry, which implies that the
particles created for these fields are not eigenstates of the
spin operator in the ( 1

2 , 0) ⊕ (0, 1
2 ) representation of the

Lorentz group, nor is it possible to construct a Hamilto-
nian density scalar under the rotational group from them.
Furthermore, following Weinberg’s approach to local causal
fields, we prove that regardless of any discrete symmetry or
adjoint structure, the relativistic fields in the ( 1

2 , 0) ⊕ (0, 1
2 )

representation satisfy the Fermi-Dirac statistics in complete
agreement with the well-established spin-statistics theorem
and experimental results.

1 Introduction

Wigner’s pioneering work established the concept of particle
in physics [1,2]. It has been demonstrated, in a well-posed
mathematical formulation, that a particle is nothing more
than an irreducible representation of the Poincaré group.
Wigner first considered the proper orthochronous Lorentz
group [1], which is the subgroup of the Lorentz group that
preserves orientation and the direction of time. Then he
achieved a general treatment of the states of particles by
including the reflections [2].

a e-mail: alexis.roaaguirre@unifei.edu.br (corresponding author)
b e-mail: masud.chaichian@helsinki.fi
c e-mail: brunoaces@ufmg.br
d e-mail: bruce@fisica.ufmg.br

The foundations of Quantum Field Theory (QFT) dic-
tate that quantum fields are the result of engaging well
defined one-particle states into interactions regulated through
Lorentz invariance [3]. Furthermore, fundamental rules such
as the principles of cluster decomposition [4] and causal-
ity do form the theoretical setting on which a quantum field
emerges [5,6].

In recent years, however, several authors have explored
alternative ways to introduce new quantum fields with spin
1/2. Such proposals have been motivated by the need to
explain the unsolved problem of dark matter in the Universe.
The proposed fields, in particular the so called ELKO fields
(an acronym from the German Eigenspinor des Ladungskon-
jugation Operators) [7,8] which are based on the spinor
classification proposed by P. Lounesto [9], have attracted
considerable attention due to their unusual characteristics.
Fermions with mass dimension 1 have been introduced in
Refs. [7,8,10,11] and widely explored in cosmology, math-
ematical physics and phenomenology [12–30]. These fields
have some properties that differ from the fermionic fields of
the Standard Model of elementary particles, where fermions
have the mass dimension 3/2, and for that reason the new
fields were considered as candidates for dark matter. For a
more recent review on this subject we refer to [31] and ref-
erences therein. On the other hand, a new class of spin-1/2
fields was proposed in Refs. [32–34] that apparently obey
the Bose–Einstein statistics, which differs from what is well-
established by the spin-statistics theorem.

The very well-known spin-statistics theorem, in a (3+1)-
dimensional spacetime, states that particles with half-integer
spin follow the Fermi-Dirac statistics, that is, they are
fermions. On the other hand, particles with integer spin fol-
low the Bose–Einstein statistics, that is, they are bosons.
This spin-statistics connection is a fundamental principle of
physics with dramatic physical consequences even in a non-
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relativistic context, e.g. the effects of Pauli’s exclusion prin-
ciple on electrons in atoms and metals, the effects of Bose–
Einstein condensation in superfluids, superconductors and
lasers. The spin-statistics connection has been demonstrated
several times using different general assumptions. See [35]
for a complete review of the literature on the spin-statistics
theorem. Among the most common assumptions we can men-
tion microcausality, the positive semidefinite Hamiltonian,
locality of fields and interactions and positive norms for
states. Among the most remarkable proofs, we can mention
Pauli’s demonstration [36] based on classical microcausal-
ity [37] and the positive semidefinite Hamiltonian conditions
[38]. In addition, the spin-statistic theorem was also proven
using Axiomatic quantum field theory [39], i.e. without refer-
ring to any Lagrangian or Hamiltonian. A more modern ver-
sion of the proof is due to S. Weinberg [3,5]. Roughly speak-
ing, Weinberg’s approach was motivated by the construction
of a general theory with a Lorentz invariant S-matrix. The
main advantage of this approach is that it does not assume
any particular Lagrangian or equation of motion, i.e. any par-
ticular dynamics, to deduce the connection between spin and
statistics.

From an experimental point of view, the spin-statistics
theorem has been tested, with a high level of precision, for
different types of particles. For particles with half-integer
spin, one of the pioneering experimental tests of the Pauli
exclusion principle, which is a consequence of the spin-
statistics theorem, was conducted by Goldhaber and Scharff-
Goldhaber in 1948 [40]. Other experimental searches for vio-
lation of the Pauli exclusion principle for electrons and nucle-
ons were done in [41–44]. All of them obtained negative
results. Among the most recent experiments, we can men-
tion the VIP-2 (Violation of the Pauli Principle), which is an
atomic physics experiment, located in the underground labo-
ratory of Gran Sasso, where the possible violation of the Pauli
exclusion principle for electrons is studied. This experimen-
tal collaboration performed a statistical analysis of approxi-
mately six months of data collection between December 2019
and May 2020, constraining β2/2 (with β the span parameter
connecting prohibited states to permitted states) to less than
6.8 × 10−42 at the 90% C.L. [45]. On the other hand, one
of the experimental tests of the Bose–Einstein (BE) statistics
and, consequently, of the spin-statistics theorem for photons
interacting with atoms was carried out at Lawrence Berkeley
National Laboratory in California, USA. This experimental
collaboration constrained the rate of transitions that violate
the statistics, as a fraction ν of an equivalent transition rate
allowed by the statistics, to ν < 4.0 × 10−11 at 90% C.L.
[46]. In conclusion, according to the experiments, the spin-
statistics theorem remains valid.

Therefore, since the spin-statistics theorem is established
so well both theoretically and experimentally, and has been
revisited by many authors for over 80 years, it is very impor-

tant to scrutinize the theoretical proposal of [32–34] in order
to find out which assumptions of the spin-statistics theorem
are violated for the so-called spin-1/2 “bosons”.

In order to answer this question, we organize this article
in the following way. In Sect. 2, we follow the approach of
local causal fields [5], and use the general principle of Lorentz
invariance to find the fundamental conditions that any spin-
1/2 field, in the ( 1

2 , 0) ⊕ (0, 1
2 ) representation space, must

satisfy. In Sect. 3, we consider the quantum field proposed in
[32–34] and show that it does not satisfy the rotational sym-
metry conditions for spin-1/2 fields, implying that it can not
be used to describe a physical particle state with spin 1/2. In
Sect. 4, we apply the same procedure to show that the fermion
fields with mass dimension 1 proposed in [7,8,10,11] also fail
to satisfy the conditions for rotational symmetry and, there-
fore, it cannot represent a physical state with spin 1/2. In
addition, based on arguments from the representation theory
of groups, we provide the reason why such proposed fields
do not satisfy the rotational symmetry conditions. In Sect.
5, we use a generalized version of the Weinberg approach,
which is based on the Lorentz invariance of the S-matrix and
the cluster decomposition principles, in order to show that
any spin 1/2 quantum field must satisfy anti-commutation
relations, i.e. it is a fermion, regardless of whether its expan-
sion coefficients are eigenstates of any discrete symmetry
operator or not. That is in complete agreement with the spin-
statistics theorem. Finally, in the last section, we present our
conclusions.

2 General framework for spin-1/2 relativistic quantum
fields

In this section, we establish the general conditions that any
relativistic quantum field in (3 + 1)-dimensional spacetime
must satisfy to represent a physical particle state. We do
this by considering the fundamental principle of the Lorentz
invariance of the S-matrix [5]. It requires that the interaction
term is the spacetime integral of a Hamiltonian scalar density,
H (x), that satisfies:

U (Λ, a)H (x)U (Λ, a)−1 = H (Λx + a), (1)

i.e. H (x) is a Lorentz scalar, and
[
H (x),H (x ′)

] = 0, for (x − x ′)2 ≥ 0, (2)

where Λ is a Lorentz transformation, a is a general spacetime
translation and, U is the corresponding operator represent-
ing the Poincaré transformation in the Hilbert space. Also,
note that throughout this work we use the metric signature
(−,+,+,+).

In general, H (x) is constructed from the creation and
annihilation operators to satisfy the cluster decomposition
principle. Because of the transformation of these operators
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under the Lorentz group, H (x) must be built of fields Ψ (x)
(and its Hermitian conjugate) with the following form:

Ψ�(x) = α ψ+
� (x) + β χ−

� (x), (3)

where α and β are constants which are chosen so that the
condition in Eq. (2) is satisfied, and

ψ+
� (x) =

∑

s,n

∫
d3 p u�(x, p, s, n) a(p, s, n), (4)

χ−
� (x) =

∑

s,n

∫
d3 p v�(x, p, s, n) b†(p, s, n), (5)

where n denotes internal quantum numbers, s runs over the
spin z-components and � runs over the representation index.
From here on, we will omit the n index because it is not
essential for our purposes.

The coefficients u�(x, p, s) and v�(x, p, s) must be chosen
so that the fields ψ+

� (x) and χ−
� (x) transform under Lorentz

transformations as

U (Λ, a)ψ+
� (x)U (Λ, a)−1 =

∑

�̄

D��̄(Λ
−1)ψ+

�̄
(Λx + a),

(6)

U (Λ, a)χ−
� (x)U (Λ, a)−1 =

∑

�̄

D��̄(Λ
−1)χ−

�̄
(Λx + a),

(7)

where the D-matrix furnishes a representation of the homo-
geneous Lorentz group [47].

More specific properties of the coefficients u�(x, p, s) and
v�(x, p, s) can be deduced by applying Eqs. (6) and (7) for
pure translations, boosts and rotations. First, applying pure
translations it is found [5,6]:

u�(x, p, s) = (2π)−3/2 eip·x u�(p, s), (8)

v�(x, p, s) = (2π)−3/2 e−i p·xv�(p, s), (9)

where the factor (2π)−3/2 is conventional. In other words,
because of the translational invariance, the dependence on x
of u�(x, p, s) and v�(x, p, s) is only an exponential factor.
We also have that due to the invariance under a general boost,
L(p), these coefficients must satisfy

u�(p, s) =
√

m

p0

∑

l̄

D��̄(L(p))u�̄(0, s), (10)

v�(p, s) =
√

m

p0

∑

�̄

D��̄(L(p))v�̄(0, s), (11)

where D(L(p)) is the matrix representation of a general Lo-
rentz boost and, u(0, s) and v(0, s) are the corresponding
zero momentum coefficients. Finally, we consider a general
rotation Λ = R in Eqs. (6) and (7). It is straightforward to
see that the coefficients u(0, s) and v(0, s) have to satisfy the

rotational symmetry conditions
∑

s̄

u�̄(0, s̄)J( j)
s̄s =

∑

�

J�̄� u�(0, s), (12)

−
∑

s̄

v�̄(0, s̄)J( j)∗
s̄s =

∑

�

J�̄� v�(0, s), (13)

where J( j) andJ are the angular momentum matrices in the
representations D( j)(R) and D(R), respectively [47]. The
conditions (12) and (13) mean that if ψ+(x) and χ−(x) are
supposed to describe particles with a spin j , the spin- j rep-
resentation D( j)(R) must be among the irreducible compo-
nents of the representation D(R).

At this point, it is important to remark that the conditions
on the fields ψ+

� (x) and χ−
� (x) given in Eqs. (6)–(7) and their

respective consequences in Eqs. (8)–(13) are general in the
sense that they do not depend on a particular adjoint structure
or on a Lagrangian (equations of motion), or on the use of
a discrete symmetry such a parity, time reversal or charge
conjugation.

Then we apply the presented general framework to our
specific case of spin-1/2 fields. To do that, we use the Weyl
basis to write J( j) and J matrices in Eqs. (12)–(13) in the
specific representations j = 1/2 and ( 1

2 , 0)⊕ (0, 1
2 ), respec-

tively. In this basis we have [48]

J(1/2) = 1

2
σ , −J(1/2)∗ = 1

2
σ2σσ2, (14)

and

Ji0 = − i

2

[
σi 0
0 −σi

]
, Ji j = 1

2
εi jk

[
σk 0
0 σk

]
, (15)

where σk , k = 1, 2, 3 are the Pauli matrices. Substituting
the above matrix representations into the conditions (12) and
(13), we obtain

∑

s̄

(u±(0, s̄))i J(1/2)
s̄s =

∑

j

1

2
σ i j (u±(0, s)) j , (16)

−
∑

s̄

(v±(0, s̄))i J(1/2)∗
s̄s =

∑

j

1

2
σ i j (v±(0, s)) j , (17)

where we have defined u(0, s) ≡ (u+(0, s), u−(0, s))T and
v(0, s) ≡ (v+(0, s), v−(0, s))T. By considering (u±(0, s))i
and (v±(0, s))i as the (i, s) elements of corresponding matri-
ces U± and V±, we can rewrite the conditions (12) and (13)
in matrix form

U± J(1/2) = 1

2
σU±, (18)

−V± J(1/2)∗ = 1

2
σV±. (19)

The last two expressions play a central role in the following
sections, where we investigate the rotational invariance for
the quantum fields.
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3 Spin-1/2 “bosons” with mass dimension 3/2 case

We now turn our attention to the class of quantum fields
proposed in Refs. [32–34]. In those references, it is stated
that the spin-1/2 field belongs to the representation ( 1

2 , 0) ⊕
(0, 1

2 ), but satisfies the Bose–Einstein statistics, which is in
disagreement with the spin-statistics theorem. Therefore, in
this section we will test whether the proposed fields satisfy
the conditions derived from the Lorentz invariance in the
previous section.

Specifically, the quantum field is defined as

Φ(x) =
∫

d3 p

(2π)3

1√
2p0

⎡

⎣
∑

i=1,2

λi (p)e−i p·x ai (p)

+
∑

i=3,4

λi (p)e+i p·x b†
i (p)

⎤

⎦ ,

(20)

where the λi (p) for any p �= 0 is obtained by applying a
Lorentz boost, D(L(p)), on the coefficients λi (0) which are
chosen to be linear combinations of the eigenstates μi , i =
1, . . . , 4, of the matrix iγ3, as follows

λ1(0) =
√
m

2
(μ1 + iμ2), λ2(0) =

√
m

2
(μ1 − iμ2),

(21)

λ3(0) =
√
m

2
(μ3 + iμ4), λ4(0) =

√
m

2
(μ3 − iμ4),

(22)

with

μ1 = [
0, i, 0, 1

]T
, μ2 = [

i, 0, 1, 0
]T

, (23)

μ3 = [
0, −i, 0, 1

]T
, μ4 = [−i, 0, 1, 0

]T
. (24)

The key idea behind the above choice is to expand the
coefficients of the quantum field as linear combinations of
the eigenstates of one of the sixteen different roots of the
identity matrix 14×4. Note that 14×4, iγ1, iγ2, iγ3, γ0, iγ2γ3,
iγ3γ1, iγ1γ2, γ0γ1, γ0γ2, γ0γ3, iγ0γ2γ3, iγ0γ1γ3, iγ0γ1γ2,
γ1γ2γ3 and iγ0γ1γ2γ3 are all roots of the 14×4 matrix. From
here on these roots are denoted as Ωi with i = 1, . . . , 16. So,
the case in consideration corresponds to Ω4. Throughout this
work we use the Weyl representation for the Dirac matrices

γ0 =
[

0 12×2

12×2 0

]
, γk =

[
0 σk

−σk 0

]
. (25)

It is also important to remark that in the momentum space
the expansion coefficients of Φ(x), λi (p), satisfy Dirac-like
equations as
(
aμ p

μ − m1
)
λ1,2(p) = 0, (26)

(
aμ p

μ + m1
)
λ3,4(p) = 0, (27)

where aμ = iγ5γμ, γ5 = − i
4!ε

μνλσ γμγνγλγσ with ε0123 =
1 and, aμ satisfies {aμ, aν} = 2ημν1. That means that the
coefficients λi (p) are eigenvectors of the aμ pμ operator, and
not of the parity operator P = m−1 pμγμ.

Notice that the λi (p) coefficients of the quantum field
Φ(x) defined in Eq. (20) satisfy trivially the translational
invariance condition Eqs. (8) and (9), as well as the invari-
ance under a general boost Eqs. (10) and (11). However,
they do not satisfy the rotational symmetry conditions. This
can be seen by substituting in Eqs. (18) and (19), the
J(1/2)representation Eq. (14) and, U± and V± matrices cor-
responding to λi (0) coefficients, which in this case are

U+ = −V+ =
√
m

2

[−1 1
i i

]
;U− = V− =

√
m

2

[
i −i
1 1

]
.

(28)

Also note that this result does not depend on the chosen
labelling of the coefficients λi (0) in Eqs. (21) and (22). Even
if the μi in Eqs. (23) and (24) were used as the expansion
coefficients of the field Φ(x), the rotational symmetry con-
dition would still not be satisfied.

A direct physical consequence of the lack of rotational
symmetry invariance is that any quantum state created by
Φ(x) does not have spin 1/2. This can be seen by applying
the spin operator in the specific representation ( 1

2 , 0)⊕(0, 1
2 )

to a state created by the Φ(x) field. For instance, if the Φ(x)
field in Eq. (20) is applied to the vacuum state, |0〉, it creates
a type-b state, denoted as |1b〉, which has two contributions
coming from λ3 and λ4. Note that, since the spin is a static
physical property, i.e. the spin and the momentum opera-
tors commute, it is sufficient to work in center-of-momentum
frame (where p = 0) to determine the spin of such state. More
specifically, by calculating the expectation value of any spin
projection operator on the |1b〉 state, i.e. 〈1b|Ŝi |1b〉 with
i = x, y, z, one obtains zero instead of �/2, which it should
be if the Φ(x) field created a physical state with spin 1/2.
The same conclusion is obtained when considering a type-a
state. Therefore, the field Φ(x) in Eq. (20) does not describe
a physical particle state with spin 1/2.

Another critical consequence of the absence of rotational
symmetry is that the field defined as in Eq. (20) is not covari-
ant under the rotational group nor under the homogeneous
Lorentz group, as it should be to satisfy Eq. (6). This implies
that this field cannot be used to construct a rotationally invari-
ant Hamiltonian density and therefore the angular momen-
tum of a closed system is not conserved. This consequence
is true even in a classical field theory and in a non-relativistic
theory.
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4 Fermion with mass dimension 1 case

The quantum field proposed in Refs. [10,11], the so-called
mass dimension 1 fermion, has the same form as given in Eq.
(20) but in this case the λi (0) coefficients are proportional to
the eigenstates of Ω7 = iγ3γ1, as follows

λ1(0) = √
m [0, 0,−i, 1], λ2(0) = √

m [0, 0, i, 1], (29)

λ3(0) = √
m [−i, 1, 0, 0], λ4(0) = √

m [i, 1, 0, 0]. (30)

Following the same procedure used in Sect. 3, it can be shown
these λi (0) do not satisfy the rotational symmetry conditions
for spin 1/2. In this case the U± and V± matrices are given
as

U+ = V− =
[

0 0
0 0

]
; U− = V+ = √

m

[−i i
1 1

]
. (31)

Furthermore, by doing the same calculation for the expecta-
tion value of the spinor operator, it can be seen that a state
created by this field is not a physical state with spin 1/2.

Analogously, we can consider the case of the ELKO quan-
tum fields [7,8,10,31], which are constructed from the eigen-
states of the charge conjugation operator (C ). In this case,
we have the coefficients

λS±
(
kμ

) =
[
iΘ

[
φ± (kμ)

]∗

φ± (kμ)

]
,

λA±
(
kμ

) =
[∓iΘ

[
φ∓ (kμ)

]∗

±φ∓ (kμ)

]
, (32)

where C λS± = +λS±, C λA± = −λA±, Θ = −iσ2 and

φ+
(
kμ

) = √
m

[
cos(θ/2) exp(−iϕ/2)

sin(θ/2) exp(+iϕ/2)

]
,

φ−
(
kμ

) = √
m

[− sin(θ/2) exp(−iϕ/2)

cos(θ/2) exp(+iϕ/2)

]
,

(33)

where θ and ϕ are arbitrary angles that parametrize the
components of φ+ (kμ) and φ− (kμ). Note that λS± (kμ) and
λA± (kμ) could be defined with some global phase factors
(ξ1, ξ2, ξ3, ξ4). However, the specific value of these phases
will not modify the following results. Thus, we use ξ1 =
ξ2, ξ3 = 0 and ξ4 = π as in Ref. [10].

The corresponding matrices U± and V± are

U+ = i V− = √
m

[−ie−iϕ/2 sin (θ/2) −ie−iϕ/2 cos (θ/2)

ieiϕ/2 cos (θ/2) −ieiϕ/2 sin (θ/2)

]
,

(34)

and

U− = −i V+ = √
m

[
e−iϕ/2 cos (θ/2) −e−iϕ/2 sin (θ/2)

eiϕ/2 sin (θ/2) eiϕ/2 cos (θ/2)

]
.

(35)

Substituting these matrices into Eqs. (18) and (19), it is
straightforward to see that the ELKO quantum fields are not

invariant under rotations. Therefore, these fields do not rep-
resent a physical state with spin 1/2 either.

Actually, there is a deeper reason why the spinors con-
sidered in both cases do not satisfy the rotational symmetry
invariance. Since J(1/2), −J(1/2)∗ and the 1

2σ are irreducible
representations of the Lie algebra of the rotation group, the
Schur’s Lemma [48] can be applied to show that there exist
only two possible solutions for the U± and V± matrices in
Eqs. (18) and (19). The first one is a trivial solution with
vanishing matrices, and the second one tell us that U± and
V±σ2 are proportional to the identity matrix. Thus, we find
that the most general zero-momentum u�(0, s) and v�(0, s)
spinors can take only the following forms

u

(
0,

1

2

)
=

⎡

⎢
⎢
⎣

c+
0
c−
0

⎤

⎥
⎥
⎦ , u

(
0,−1

2

)
=

⎡

⎢
⎢
⎣

0
c+
0
c−

⎤

⎥
⎥
⎦ , (36)

v

(
0,

1

2

)
=

⎡

⎢⎢
⎣

0
d+
0
d−

⎤

⎥⎥
⎦ , v

(
0,−1

2

)
= −

⎡

⎢⎢
⎣

d+
0
d−
0

⎤

⎥⎥
⎦ , (37)

where c± and d± are arbitrary constants, which in general
can be complex numbers or even zero and, must satisfy |c+|2
+|c−|2 = 1 and |d+|2 +|d−|2 = 1. Therefore, the expansion
coefficients of all considered fields do not fit this particular
form. Note that a quantum field, expanded by the coefficients
in Eqs. (36) and (37), has the foreseen spin expectation value
for a quantum field of spin 1/2, i.e. 〈1b|Ŝi |1b〉 = �

2 with
i = x, y, z.

We can now conclude the main reason why the spin-1/2
“bosons” with mass dimension 3/2 and fermions with mass
dimension 1, including ELKO, do not describe a physical
particle state with spin 1/2. Although the constructions of
those fields resemble Dirac’s historic construction in some
respects, they use a linear combination of the eigenstates of
the Ω4, Ω7 and C operators as expansion coefficients of
the quantum field. Therefore, those quantum fields are not
covariant under rotations. When the covariance of the quan-
tum fields established in Eqs. (6) and (7) is applied to a pure
rotation, that is, Λ = R and a = 0, we see that the quantum
field, ψ(x), has to transform as U (R, 0)ψ(x)U (R, 0)−1 =
D(R−1)ψ(R x), where D(R−1) has to be a representation of
the rotation group, that is, a representation of the well-known
angular momentum. If we consider any of the proposed new
fields as ψ(x), we obtain that U (R, 0)ψ(x)U (R, 0)−1 �=
D(R−1)ψ(R x), where D(R−1) is the ( 1

2 , 0) ⊕ (0, 1
2 ) rep-

resentation generated by the generators in Eq. (15). More-
over, one could think that the rotational covariance is only
broken by a global phase, i.e. U (R, 0)ψ(x)U (R, 0)−1 =
exp(i ω) × D(R−1)ψ(R x), where ω is an arbitrary phase.
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However, this is not the case as can be seen by a straightfor-
ward calculation.

5 Confronting spin-1/2 bosons with mass dimension 3/2
against the spin-statistics theorem

According to Refs. [32–34], the so-called spin-1/2 “bosons”
field Φ(x) and its adjoint commute, instead of anticommut-
ing, for space-like separations. Consequently, it was con-
cluded that Φ(x) is a new type of bosonic field endowed with
spin 1/2, which evades the well-stablished spin-statistics
theorem. Furthermore, the Feynman-Dyson propagator was
computed, showing that Φ(x) should have mass dimension
3/2.

In order to elucidate this controversial result, we will prove
that relativistic spin-1/2 fields, in (3+1)-dimensional space-
time, satisfy the Fermi-Dirac statistic regardless of whether
its expansion coefficients are chosen to be eigenstates of the
parity, charge conjugation, time reversal, or any other oper-
ator. To do that, we will generalize the Weinberg’s proof [5]
without imposing any discrete symmetry.

Our starting point is the condition in Eq. (2) that comes
from the Lorentz invariance of the S-matrix, which ensures
the inability of an observer to detect absolute inertial motion
by performing scattering experiments. From an algebraic
point of view, this condition implies that, for space-like inter-
vals, the fields in (3) satisfy the following conditions

[
Ψ�(x), Ψ�̄(y)

]
∓ = 0,

[
Ψ�(x), Ψ

†
�̄
(y)

]

∓ = 0, (38)

where (−,+) signs means commutator and anti-commutator,
respectively. Note that the second condition in Eq. (38) makes
use of the Hermitian conjugate field and then it is not neces-
sary to define the adjoint structure at this point.

The first condition in Eq. (38) is satisfied for any constants
α and β because

[
a(p, s), a(p′, s′)

]
∓ = 0,

[
b(p, s), b(p′, s′)

]
∓ = 0,

[
a(p, s), b†(p′, s′)

]

∓ = 0, (39)

and the corresponding relations for the Hermitian conjugate
operators. However, the second condition in Eq. (38) is not
satisfied in general, which imposes some constraints on the
type of statistics that the field satisfies and, eventually, on the
α and β constants. Using the canonical relations

[
a(p, s), a†(p′, s′)

]

∓ = δ(3)(p − p′)δss′ ,
[
b(p, s), b†(p′, s′)

]

∓ = δ(3)(p − p′)δss′ , (40)

we obtain

[
Ψ�(x), Ψ

†
�̄
(y)

]

∓ = (2π)−3
∫

d3 p
[
|α|2N��̄(p)eip·(x−y)

∓|β|2M��̄(p)e−i p·(x−y)
]
, (41)

where

N��̄(p) ≡
∑

s

u�(p, s)u∗̄
�
(p, s), (42)

M��̄(p) ≡
∑

s

v�(p, s)v∗̄
�
(p, s). (43)

Applying Eqs. (10) and (11), we can write the above quanti-
ties as

N��̄(p) = m

p0 D(L(p))N��̄(0)D†(L(p)), (44)

M��̄(p) = m

p0 D(L(p))M��̄(0)D†(L(p)), (45)

where

N��̄(0) =

⎡

⎢
⎢
⎣

|c+|2 0 c+c∗− 0
0 |c+|2 0 c+c∗−

c−c∗+ 0 |c−|2 0
0 c−c∗+ 0 |c−|2

⎤

⎥
⎥
⎦ , (46)

and M��̄(0) is obtained by replacing c± → d± in Eq. (46).
Let us now consider the explicit calculations only for N��̄(0),
which can be spanned in terms of the gamma matrices as

N��̄(0) = 1

2

(|c+|2 + |c−|2)1 + 1

2

(
c+c∗− + c−c∗+

)
γ0

+1

2

(|c+|2 − |c−|2) γ5 + 1

2

(
c+c∗− − c−c∗+

)
γ0γ5.

(47)

It is also worth to reinforce that Eq. (47) is a general result,
where no assumptions on parity or any other discrete symme-
tries have been used. Now, substituting Eq. (47) into Eq. (44)
we obtain

N��̄(p) = 1

2p0

[
−

(
|c+|2 + |c−|2

)
pμγμ

+ m
(
c+c∗− + c−c∗+

)
1

+ m
(
c+c∗− − c−c∗+

)
γ5

−
(
|c+|2 − |c−|2

)
pμγμγ5

]
γ0.

(48)
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With these results we can finally write Eq. (41) as

[
Ψ�(x), Ψ

†
�̄
(y)

]

∓ =
(
|α|2

[(|c+|2 + |c−|2)iγμ∂μ

+ m
(
c+c∗− + c−c∗+

)
1 + m

(
c+c∗− − c−c∗+

)
γ5

+ (|c+|2 − |c−|2) iγμγ5∂
μ
]
γ0 Δ+(x − y)

∓ |β|2
[(|d+|2 + |d−|2)iγμ∂μ

+ m
(
d+d∗− + d−d∗+

)
1 + m

(
d+d∗− − d−d∗+

)
γ5

+ (|d+|2 − |d−|2) iγμγ5∂
μ
]
γ0 Δ+(y − x)

)

��̄
,

(49)

where

Δ+(x) ≡
∫

d3 p

2p0(2π)3 eip·x (50)

is the Wightman 2-point function and p0 = √
p2 + m2. In

order to satisfy the second condition in Eq. (38), it is neces-
sary and sufficient that

|α|2|c+|2 = ∓|β|2|d+|2, |α|2|c−|2 = ∓|β|2|d−|2, (51)

and

|α|2c+c∗− = ±|β|2d+d∗−, (52)

where we have used that for (x − y) space-like Δ+(x − y)
and its first derivative are even and odd functions of (x-y),
respectively. We notice that the constraints in Eq. (51) have a
non-trivial solution provided we choose the bottom sign. This
means that the spin-1/2 field Ψ (x) in the ( 1

2 , 0)⊕ (0, 1
2 ) rep-

resentation must satisfy the anti-commutation relations, i.e.
the spin-1/2 field Ψ (x) is a fermion, in complete agreement
with the spin-statistics theorem. This general result does not
depend on the use of any discrete symmetry such as parity
or the definition of any adjoint structure.

Once the statistics of the Ψ (x) field is set, Eqs. (51) and
(52) simplify a little more and we obtain the following useful
relation

c+
c−

= −d+
d−

. (53)

Note that c± and d± are not completely determined from
the condition in Eq. (53). Now, we can write α = |α|eiθα ,
β = |β|eiθβ and, redefining the creation and annihilation
operators in Eqs. (4) and (5) as a(p, s) → eiθαa(p, s) and
b(p, s) → e−iθβb(p, s) (note that these redefinitions do not
modify the canonical anti-commutation relations (40) of a
and b operators), we obtain

Ψ (x) = |α|
[
ψ+(x) + |β|

|α|χ
−(x)

]
. (54)

Absorbing the overall factor |α| in the normalization of the
field Ψ (x) and using the constraints in Eqs. (51) and (52),

we get

Ψ (x) = ψ+(x) + |c±|
|d±|χ

−(x). (55)

Needless to say, we are assuming that |d+| �= 0 or |d−| �= 0
in Eq. (55). In order to determine c± and d± completely, addi-
tional physical or mathematical conditions must be imposed.
For example, a default choice is to impose parity symmetry
on the fields in Eqs. (4) and (5) which lead us to

(
c+
c−

)2

=
(
d+
d−

)2

= 1. (56)

Using this relation and the freedom of the overall factor,
the form of the Ψ (x) field is the standard Dirac field, i.e.
Ψ (x) = ψ+(x) + χ−(x). It is also possible to consider the
charge-conjugation and time reversal properties of the field
in Eq. (55) to obtain, for instance, the Majorana fields [5].

6 Conclusions

In this paper, we show that although the so-called spin-1/2
“bosons” with the mass dimension 3/2 and fermions with
mass dimension 1 (including ELKO) satisfy some of the con-
ditions arising from Lorentz invariance, such as translation,
Eqs. (8) and (9), and boost invariance, Eqs. (10) and (11),
they do not satisfy the invariance under rotations, Eqs. (12)
and (13). This brings unacceptable physical consequences
considering a relativistic quantum theory. For example, none
of the proposed fields create particles with definite spin. Fur-
thermore, it is impossible to construct a rotationally invari-
ant quantity from those fields, which implies that angular
momentum is not conserved. In conclusion, such fields do
not represent physical particle states with spin 1/2.

Next, we prove that any spinorial field in the representation
( 1

2 , 0)⊕(0, 1
2 ) of the Lorentz group satisfies the Fermi-Dirac

statistics, that is, it is a fermionic field, regardless of whether
its expansion coefficients are eigenstates of the parity oper-
ator or any other discrete symmetry operator. No particular
definition of adjoint structure is used. In this way, we clarify
that the reason why the so-called spin-1/2 “boson” escapes
the spin-statistics theorem is that this field is not rotationally
invariant and therefore not even a field with definite spin 1/2.

Acknowledgements A. R. Aguirre thanks CAPES and B. A. Couto e
Silva thanks FAPEMIG for financial support. B. L. Sánchez-Vega thanks
the National Council for Scientific and Technological Development of
Brazil, CNPq, for the financial support through grant n◦ 311699/2020-0.
M. M. Chaichian is deeply grateful to Dharam Ahluwalia for correspon-
dence with several critical and clarifying remarks, to Christian Böhmer,
Michael Dütsch and Markku Oksanen for many useful discussions,
enlightening suggestions and encouragement.

123



958 Page 8 of 9 Eur. Phys. J. C (2022) 82 :958

Data Availability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
study and no experimental data has been listed.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

References

1. E.P. Wigner, On unitary representations of the inhomogeneous
Lorentz group. Ann. Math. 40, 149 (1939)

2. E. P. Wigner, Unitary representations of the inhomogeneous
Lorentz group including reflections, in Group theoretical concepts
and methods in elementary particle physics, Lectures of the Istan-
bul summer school of theoretical physics, 37–80 (1964)

3. S. Weinberg, Feynman rules for any spin. Phys. Rev. 133, B1318
(1964)

4. E.H. Wichmann, J.H. Crichton, Cluster decomposition properties
of the S matrix. Phys. Rev. 132, 2788 (1963)

5. S. Weinberg, The Quantum Theory of Fields, Vol. I: Foundations,
Cambridge University Press, New York, (1996)

6. A. Duncan, The Conceptual Framework of Quantum Field Theory
(Oxford University Press, Oxford, 2012)

7. D.V. Ahluwalia-Khalilova, D. Grumiller, Spin-half fermions with
mass dimension 1: theory, phenomenology, and dark matter. JCAP
07, 012 (2005)

8. D.V. Ahluwalia-Khalilova, D. Grumiller, Dark matter: A spin-1/2
fermion field with mass dimension 1? Phys. Rev. D 72, 067701
(2005)

9. P. Lounesto, Clifford Algebras and Spinors, 2nd edn. (London
Mathematical Society Lecture Note Series, Cambridge University
Press, 2001)

10. D. V. Ahluwalia, Mass dimension one fermions, Cambridge Uni-
versity Press (2019)

11. D.V. Ahluwalia, A new class of mass dimension 1 fermions. Proc.
R. Soc. A 476, 2240 (2020)

12. C.G. Böhmer, The Einstein-Cartan-Elko system. Ann. Phys. 16, 38
(2007)

13. C.G. Böhmer, The Einstein-Elko system - Can dark matter drive
inflation? Ann. Phys. 16, 325 (2007)

14. C.G. Böhmer, Dark spinor inflation - theory primer and dynamics.
Phys. Rev. D 77, 123535 (2008)

15. C.G. Böhmer, J. Burnett, Dark spinors with torsion in cosmology.
Phys. Rev. D 78, 104001 (2008)

16. C.G. Böhmer, J. Burnett, D.F. Mota, D.J. Shaw, Dark spinor models
in gravitation and cosmology. JHEP 07, 053 (2010)

17. L. Fabbri, The most general cosmological dynamics for ELKO
matter fields. Phys. Lett. B 704, 255 (2011)

18. H.M. Sadjadi, On coincidence problem in ELKO dark energy
model. Gen. Relativ. Gravit. 44, 2329 (2012)

19. A. Basak, J.R. Bhatt, S. Shankaranarayanan, K.V.P. Varma, Attrac-
tor behaviour in ELKO cosmology. JCAP 04, 025 (2013)

20. R. da Rocha, J.M. Hoff da Silva, From Dirac spinor fields to ELKO.
J. Math. Phys. 48, 123517 (2007)

21. R. da Rocha, A.E. Bernardini, J.M. Hoff da Silva, Exotic Dark
Spinor Fields. JHEP 1104, 110 (2011)

22. L. Fabbri, S. Vignolo, ELKO and Dirac Spinors seen from Torsion.
Int. J. Mod. Phys. D 23, 1444001 (2014)

23. B. Agarwal, P. Jain, S. Mitra, A.C. Nayak, R.K. Verma, ELKO
fermions as dark matter candidates. Phys. Rev. D 92, 075027 (2015)

24. A. Alves, F. de Campos, M. Dias, J.M. Hoff da Silva, Searching
for Elko dark matter spinors at the CERN LHC. Int. J. Mod. Phys.
A 30, 1550006 (2015)

25. J. M. Hoff da Silva, C. H. Coronado Villalobos, R. J. Bueno Roge-
rio and E. Scatena, On the bilinear covariants associated to mass
dimension 1 spinors, Eur. Phys. J. C 76, 563 (2016)

26. C.-Y. Lee, M. Dias, Constraints on mass dimension 1 fermionic
dark matter from the Yukawa interaction. Phys. Rev. D 94, 065020
(2016)

27. D.V. Ahluwalia, Evading Weinberg’s no-go theorem to construct
mass dimension 1 fermions: constructing darkness. EPL 118,
60001 (2017)

28. D.V. Ahluwalia, The theory of local mass dimension 1 fermions of
spin one half. Adv. Appl. Clifford Algebras 27, 2247 (2017)

29. R. J. Bueno Rogerio, J. M. Hoff da Silva, M. Dias and S. H. Pereira,
Effective lagrangian for a mass dimension 1 fermionic field in
curved spacetime, JHEP 1802, 145 (2018)

30. J. M. Hoff da Silva, and R. J. Bueno Rogerio, Massive spin-one-
half one-particle states for the mass-dimension-one fermions. EPL
128, 11002 (2019)

31. D. V. Ahluwalia, J. M. Hoff da Silva, C. Y. Lee, Y. X. Liu, S. H.
Pereira, et al. Mass dimension one fermions: Constructing dark-
ness. Phys. Rept. 967 (2022)

32. D.V. Ahluwalia, Spin-half bosons with mass dimension three-half:
Towards a resolution of the cosmological constant problem. EPL
131, 41001 (2020)

33. D. V. Ahluwalia, New species of fermions and bosons, cosmologi-
cal constant problem and a farewell to spin–statistics theorem. Int.
J. Mod. Phys. D 30(14), 2142031 (2021)

34. D. V. Ahluwalia,Theory of spin one half bosons. arXiv:1908.09627
[physics.gen-ph]

35. C. Curceanu, J.D. Gillaspy, R.C. Hilborn, Resource Letter SS-1:
The Spin-Statistics Connection Am. J. Phys. 80, 561 (2012)

36. W. Pauli, Théorie quantique relativiste des particules obeisant á la
statistique de Einstein-Bose. Annals de Institut Henry Poincaré 6,
109–136 (1936)

37. M. Massimi, M. Redhead, Weinberg’s proof of the spin-statistics
theorem. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod.
Phys. 34, 4 (2003)

38. W. Pauli, The connection between spin and statistics. Phys. Rev.
58, 716–722 (1940)

39. R.F. Streater, A.S. Wightman, PCT, Spin and Statistics, and All
That (W.A. Benjamin, New York, 1964)

40. M. Goldhaber and Gertrude Scharff-Goldhaber. Identification of
Beta-Rays with Atomic Electrons. Phys. Rev. 73(12), 1472–1473
(1948)

41. F. Reines, H.W. Sobel, Test of the pauli exclusion principle for
atomic electrons. Phys. Rev. Lett. 32, 954 (1974)

42. R.D. Amado, H. Primakoff, Comments on testing the Pauli princi-
ple. Phys. Rev. C 22, 1338 (1980)

43. K. Deilamian, J.D. Gillaspy, D.E. Kelleher, Search for small viola-
tions of the symmetrization postulate in an excited state of helium
Phys. Phys. Rev. Lett. 74, 4787 (1995)

44. H.O. Back et al., New experimental limits on violations of the
Pauli exclusion principle obtained with the Borexino counting test
facility EPJC 37, 421 (2004)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1908.09627


Eur. Phys. J. C (2022) 82 :958 Page 9 of 9 958

45. F. Napolitano, S. Bartalucci, S. Bertolucci, M. Bazzi et al., Testing
the Pauli Exclusion Principle with the VIP2 Experiment. Symmetry
14, 893 (2022)

46. D. English, V.V. Yashchuk, D. Budker, Spectroscopic Test of Bose–
Einstein statistics for photons. Phys. Rev. Lett. 104, 253604 (2010)

47. J. F. Cornwell, Group Theory in Physics Techniques of Physics,
Vol. 2, Academic Press, (1986)

48. Howard Georgi, Lie Algebras in Particle Physics, Perseus Books,
(1999)

49. J. Humphreys, Introduction to Lie Algebras and Representation
Theory, Graduate Texts in Mathematics 9, Springer, (1972)

123


