12 research outputs found

    Prenatal exposure to traffic-related air pollution and ultrasound measures of fetal growth in the INMA Sabadell cohort

    No full text
    Background: Few studies have used longitudinal ultrasound measurements to assess the effect of traffic-related air pollution on fetal growth./nObjective: We examined the relationship between exposure to nitrogen dioxide (NO2) and aromatic hydrocarbons [benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX)] on fetal growth assessed by 1,692 ultrasound measurements among 562 pregnant women from the Sabadell cohort of the Spanish INMA (Environment and Childhood) study./nMethods: We used temporally adjusted land-use regression models to estimate exposures to NO2 and BTEX. We fitted mixed-effects models to estimate longitudinal growth curves for femur length (FL), head circumference (HC), abdominal circumference (AC), biparietal diameter (BPD), and estimated fetal weight (EFW). Unconditional and conditional SD scores were calculated at 12, 20, and 32 weeks of gestation. Sensitivity analyses were performed considering time–activity patterns during pregnancy./nResults: Exposure to BTEX from early pregnancy was negatively associated with growth in BPD during weeks 20–32. None of the other fetal growth parameters were associated with exposure to air pollution during pregnancy. When considering only women who spent 2 hr/day in nonresidential outdoor locations, effect estimates were stronger and statistically significant for the association between NO2 and growth in HC during weeks 12–20 and growth in AC, BPD, and EFW during weeks 20–32./nConclusions: Our results lend some support to an effect of exposure to traffic-related air pollutants from early pregnancy on fetal growth during mid-pregnancy.This study was funded by grants from the European Union: NEWGENERIS FP6-2003- Food-3-A-016320, FP7-ENV-2011 cod 282957, HEALTH.2010.2.4.5-1; and by grants from Spain: Instituto de Salud Carlos III (Red INMA G03/176, CB06/02/0031, and FIS-FEDER PI03/1615, PI04/1509, PI04/1112, PI04/1931, PI04/2018, PI04/1436, PI05/1079, PI05/1052, PI06/1213, PI07/0314, PI08/1151, PI09/02647, PI09/02311, PI11/01007, PI11/02591, PI11/02038, PI13/1944, PI13/02429, PI14/0891, PI14/1687, and Miguel Servet CP11/00178 and MS13/00054), Conselleria de Sanitat Generalitat Valenciana, Generalitat de Catalunya (CIRIT 1999SGR 00241), Diputación Foral de Guipúzcoa (DFG/004), Departamento de Sanidad y Consumo Gobierno Vasco (2005111093), Obra Social Cajastur, and Oviedo University

    Prenatal exposure to traffic-related air pollution and ultrasound measures of fetal growth in the INMA Sabadell cohort

    No full text
    Background: Few studies have used longitudinal ultrasound measurements to assess the effect of traffic-related air pollution on fetal growth./nObjective: We examined the relationship between exposure to nitrogen dioxide (NO2) and aromatic hydrocarbons [benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX)] on fetal growth assessed by 1,692 ultrasound measurements among 562 pregnant women from the Sabadell cohort of the Spanish INMA (Environment and Childhood) study./nMethods: We used temporally adjusted land-use regression models to estimate exposures to NO2 and BTEX. We fitted mixed-effects models to estimate longitudinal growth curves for femur length (FL), head circumference (HC), abdominal circumference (AC), biparietal diameter (BPD), and estimated fetal weight (EFW). Unconditional and conditional SD scores were calculated at 12, 20, and 32 weeks of gestation. Sensitivity analyses were performed considering time–activity patterns during pregnancy./nResults: Exposure to BTEX from early pregnancy was negatively associated with growth in BPD during weeks 20–32. None of the other fetal growth parameters were associated with exposure to air pollution during pregnancy. When considering only women who spent 2 hr/day in nonresidential outdoor locations, effect estimates were stronger and statistically significant for the association between NO2 and growth in HC during weeks 12–20 and growth in AC, BPD, and EFW during weeks 20–32./nConclusions: Our results lend some support to an effect of exposure to traffic-related air pollutants from early pregnancy on fetal growth during mid-pregnancy

    Annoyance caused by noise and air pollution during pregnancy: associated factors and correlation with outdoor NO2 and benzene estimations

    No full text
    This study aimed to describe the degree of annoyance among pregnant women in a Spanish cohort and to examine associations with proximity to traffic, NO2 and benzene exposure. We included 2457 participants from the Spanish Childhood and Environment study. Individual exposures to outdoor NO2 and benzene were estimated, temporally adjusted for pregnancy. Interviews about sociodemographic variables, noise and air pollution were carried out. Levels of annoyance were assessed using a scale from 0 (none) to 10 (strong and unbearable); a level of 8 to 10 was considered high. The reported prevalence of high annoyance levels from air pollution was 11.2% and 15.0% from noise; the two variables were moderately correlated (0.606). Significant correlations between NO2 and annoyance from air pollution (0.154) and that from noise (0.181) were observed. Annoyance owing to noise and air pollution had a low prevalence in our Spanish population compared with other European populations. Both factors were associated with proximity to traffic. In multivariate models, annoyance from air pollution was related to NO2, building age, and country of birth; annoyance from noise was only related to the first two. The health burden of these exposures can be increased by stress caused by the perception of pollution sources.This study was funded by grants from Spain: Instituto de Salud Carlos III, Red INMA G03/176, CB06/02/0031, FIS-FEDER 03/1615, 04/1509, 04/1112, 04/1931, 04/2018, 04/1436, 05/1079, 05/1052, 06/1213, 07/0314, 08/1151,/n09/02647, 09/02311, 11/01007, 11/02591, 11/02038, 13/1944, 13/02429, 14/00891 and 14/01687,/nObra Social Cajastur, University of Oviedo, Conselleria de Sanitat Generalitat Valenciana , Generalitat/nde Catalunya (CIRIT 1999SGR 00241), Diputación Foral de Guipúzcoa (DFG/004), Departamento de/nSanidad y Consumo Gobierno Vasco (2005111093) and Fundación Roger Torné./nhttp://www.proyectoinma.org/instituciones-participantes/en_entidades-colaboradoras/

    Residential exposure to outdoor air pollution during pregnancy and anthropometric measures at birth in a multicenter cohort in Spain

    Get PDF
    Background: A growing body of research suggests that prenatal exposure to air pollution may be harmful to fetal development. We assessed the association between exposure to air pollution during pregnancy and anthropometric measures at birth in four areas within the Spanish Children’s Health and Environment (INMA) mother and child cohort study. Methods: Exposure to ambient nitrogen dioxide (NO2) and benzene was estimated for the residence of each woman (n = 2,337) for each trimester and for the entire pregnancy. Outcomes included birth weight, length, and head circumference. The association between residential outdoor air pollution exposure and birth outcomes was assessed with linear regression models controlled for potential confounders. We also performed sensitivity analyses for the subset of women who spent more time at home during pregnancy. Finally, we performed a combined analysis with meta-analysis techniques. Results: In the combined analysis, an increase of 10 µg/m3 in NO2 exposure during pregnancy was associated with a decrease in birth length of –0.9 mm [95% confidence interval (CI), –1.8 to –0.1 mm]. For the subset of women who spent ≥ 15 hr/day at home, the association was stronger (–0.16 mm; 95% CI, –0.27 to –0.04). For this same subset of women, a reduction of 22 g in birth weight was associated with each 10-µg/m3 increase in NO2 exposure in the second trimester (95% CI, –45.3 to 1.9). We observed no significant relationship between benzene levels and birth outcomes. Conclusions: NO2 exposure was associated with reductions in both length and weight at birth. This association was clearer for the subset of women who spent more time at home.This study was funded by grants from the Instituto de Salud Carlos III (Red INMA G03/176 and CB06/02/0041), the Spanish Ministry of Health (FIS-FEDER 03/1615, 04/1509, 04/1112, 04/1931, 04/1436, 05/1079, 05/1052, 06/1213, 07/0314, 08/1151, 09/02311, 09/02647), Conselleria de Sanitat Generalitat Valenciana, Generalitat de Catalunya-CIRIT 1999SGR 00241, and the Fundación Roger Torn

    Early-life exposure to outdoor air pollution and respiratory health, ear infections, and eczema in infants from the INMA study

    No full text
    Background: Prenatal and early-life periods may be critical windows for harmful effects of air pollution on infant health. Objectives: We studied the association of air pollution exposure during pregnancy and the first year of life with respiratory illnesses, ear infections, and eczema during the first 12–18 months of age in a Spanish birth cohort of 2,199 infants. Methods: We obtained parentally reported information on doctor-diagnosed lower respiratory tract infections (LRTI) and parental reports of wheezing, eczema, and ear infections. We estimated individual exposures to nitrogen dioxide (NO2) and benzene with temporally adjusted land use regression models. We used log-binomial regression models and a combined random-effects meta-analysis to estimate the effects of air pollution exposure on health outcomes across the four study locations. Results: A 10-µg/m3 increase in average NO2 during pregnancy was associated with LRTI [relative risk (RR) = 1.05; 95% CI: 0.98, 1.12] and ear infections (RR = 1.18; 95% CI: 0.98, 1.41). The RRs for an interquartile range (IQR) increase in NO2 were 1.08 (95% CI: 0.97, 1.21) for LRTI and 1.31 (95% CI: 0.97, 1.76) for ear infections. Compared with NO2, the association for an IQR increase in average benzene exposure was similar for LRTI (RR = 1.06; 95% CI: 0.94, 1.19) and slightly lower for ear infections (RR = 1.17; 95% CI: 0.93, 1.46). Associations were slightly stronger among infants whose mothers spent more time at home during pregnancy. Air pollution exposure during the first year was highly correlated with prenatal exposure, so we were unable to discern the relative importance of each exposure period. Conclusions: Our findings support the hypothesis that early-life exposure to ambient air pollution may increase the risk of upper and lower respiratory tract infections in infants.This study was funded by grants from Spanish Ministry of Health–Instituto de Salud Carlos III (Red INMA G03/176, CB06/02/0041, FIS-PI041436, FIS- PI081151, FIS-PI042018, FIS-PI09/02311, FIS-PI06/0867, FIS-PS09/00090, FIS-FEDER 03/1615, 04/1509, 04/1112, 04/1931, 05/1079, 05/1052, 06/1213, 07/0314, and 09/02647), Generalitat de Catalunya-CIRIT (Consejo Interdepartamental de Investigación e Innovación Tecnológica) (1999SGR 00241), Conselleria de Sanitat Generalitat Valenciana, Universidad de Oviedo, Obra social Cajastur, Department of Health of the Basque Government (2005111093 and 2009111069), Provincial Government of Gipuzkoa (DFG06/004 and DFG08/001), and Fundación Roger Torné. M.P. holds a Juan de la Cierva post-doctoral fellowship awarded from the Spanish Ministry of Science and Innovation (JCI-2011-09479

    Residential exposure to outdoor air pollution during pregnancy and anthropometric measures at birth in a multicenter cohort in Spain

    No full text
    Background: A growing body of research suggests that prenatal exposure to air pollution may be harmful to fetal development. We assessed the association between exposure to air pollution during pregnancy and anthropometric measures at birth in four areas within the Spanish Children’s Health and Environment (INMA) mother and child cohort study. Methods: Exposure to ambient nitrogen dioxide (NO2) and benzene was estimated for the residence of each woman (n = 2,337) for each trimester and for the entire pregnancy. Outcomes included birth weight, length, and head circumference. The association between residential outdoor air pollution exposure and birth outcomes was assessed with linear regression models controlled for potential confounders. We also performed sensitivity analyses for the subset of women who spent more time at home during pregnancy. Finally, we performed a combined analysis with meta-analysis techniques. Results: In the combined analysis, an increase of 10 µg/m3 in NO2 exposure during pregnancy was associated with a decrease in birth length of –0.9 mm [95% confidence interval (CI), –1.8 to –0.1 mm]. For the subset of women who spent ≥ 15 hr/day at home, the association was stronger (–0.16 mm; 95% CI, –0.27 to –0.04). For this same subset of women, a reduction of 22 g in birth weight was associated with each 10-µg/m3 increase in NO2 exposure in the second trimester (95% CI, –45.3 to 1.9). We observed no significant relationship between benzene levels and birth outcomes. Conclusions: NO2 exposure was associated with reductions in both length and weight at birth. This association was clearer for the subset of women who spent more time at home.This study was funded by grants from the Instituto de Salud Carlos III (Red INMA G03/176 and CB06/02/0041), the Spanish Ministry of Health (FIS-FEDER 03/1615, 04/1509, 04/1112, 04/1931, 04/1436, 05/1079, 05/1052, 06/1213, 07/0314, 08/1151, 09/02311, 09/02647), Conselleria de Sanitat Generalitat Valenciana, Generalitat de Catalunya-CIRIT 1999SGR 00241, and the Fundación Roger Torn

    Prenatal exposure to residential air pollution and infant mental development: modulation by antioxidants and detoxification factors

    No full text
    Background: Air pollution effects on children’s neurodevelopment have recently been suggested to occur most likely through the oxidative stress pathway. Objective: We aimed to assess whether prenatal exposure to residential air pollution is associated with impaired infant mental development, and whether antioxidant/detoxification factors modulate this association. Methods: In the Spanish INfancia y Medio Ambiente (INMA; Environment and Childhood) Project, 2,644 pregnant women were recruited during their first trimester. Nitrogen dioxide (NO2) and benzene were measured with passive samplers covering the study areas. Land use regression models were developed for each pollutant to predict average outdoor air pollution levels for the entire pregnancy at each residential address. Maternal diet was obtained at first trimester through a validated food frequency questionnaire. Around 14 months, infant mental development was assessed using Bayley Scales of Infant Development. Results: Among the 1,889 children included in the analysis, mean exposure during pregnancy was 29.0 μg/m3 for NO2 and 1.5 μg/m3 for benzene. Exposure to NO2 and benzene showed an inverse association with mental development, although not statistically significant, after adjusting for potential confounders [β (95% confidence interval) = –0.95 (–3.90, 1.89) and –1.57 (–3.69, 0.56), respectively, for a doubling of each compound]. Stronger inverse associations were estimated for both pollutants among infants whose mothers reported low intakes of fruits/vegetables during pregnancy [–4.13 (–7.06, –1.21) and –4.37 (–6.89, –1.86) for NO2 and benzene, respectively], with little evidence of associations in the high-intake group (interaction p-values of 0.073 and 0.047). Inverse associations were also stronger in non-breast-fed infants and infants with low maternal vitamin D, but effect estimates and interactions were not significant. Conclusions: Our findings suggest that prenatal exposure to residential air pollutants may adversely affect infant mental development, but potential effects may be limited to infants whose mothers report low antioxidant intakes.This study was funded by grants from the Spanish Ministry of Health-Instituto de Salud Carlos III (Red INMA G03/176, CB06/02/0041, FIS-PI041436, FIS- PI081151, FIS-PI042018, FIS-PI09/02311, FIS-PI06/0867, FIS-PS09/00090, FIS-FEDER 03/1615, 04/1509, 04/1112, 04/1931, 05/1079, 05/1052, 06/1213, 07/0314, and 09/02647), Generalitat de Catalunya-CIRIT (Consell Interdepartamental de Recerca i Innovació Tecnològica) (1999SGR 00241), Conselleria de Sanitat Generalitat Valenciana, Universidad de Oviedo, Obra social Cajastur, Department of Health of the Basque Government (2005111093 and 2009111069), the Provincial Government of Gipuzkoa (DFG06/004 and DFG08/001), and Fundación Roger Torn

    Association of long-term exposure to traffic-related air pollution with blood pressure and hypertension in an adult population-based cohort in Spain (the REGICOR study)

    Get PDF
    Background: Long-term exposure to traffic-related air pollution may increase blood pressure (BP) and induce hypertension. However, evidence supporting these associations is limited, and they may be confounded by exposure to traffic noise and biased due to inappropriate control for use of BP-lowering medications. Objectives: We evaluated the associations of long-term traffic-related air pollution with BP and prevalent hypertension, adjusting for transportation noise and assessing different methodologies to control for BP-lowering medications. Methods: We measured systolic (SBP) and diastolic BP (DBP) at baseline (years 2003–2005) in 3,700 participants, 35–83 years of age, from a population-based cohort in Spain. We estimated home outdoor annual average concentrations of nitrogen dioxide (NO2) with a land-use regression model. We used multivariate linear and logistic regression. Results: A 10-μg/m3 increase in NO2 levels was associated with 1.34 mmHg (95% CI: 0.14, 2.55) higher SBP in nonmedicated individuals, after adjusting for transportation noise. Results were similar in the entire population after adjusting for medication, as commonly done, but weaker when other methods were used to account for medication use. For example, when 10 mmHg were added to the measured SBP levels of medicated participants, the association was β = 0.78 (95% CI: –0.43, 2.00). NO2 was not associated with hypertension. Associations of NO2 with SBP and DBP were stronger in participants with cardiovascular disease, and the association with SBP was stronger in those exposed to high traffic density and traffic noise levels ≥ 55 dB(A). Conclusions: We observed a positive association between long-term exposure to NO2 and SBP, after adjustment for transportation noise, which was sensitive to the methodology used to account for medication.This study was supported by funding from Marató 081632, Centre for Research in Environmental Epidemiology (CREAL) Pilot Project Funds 2009; Centro de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP) Pilot Project Funds 2008 (AA08_15); Instituto de Salud Carlos III (ISCIII): Fondo de Investigación Sanitaria (FIS) PI060258, Red de Investigación Cardiovascular–Programa Heracles RD 12/0042, Red de Investigación en Actividades Preventivas y Promoción de la Salud (RedIAPP) RD 06/0018, and a fellowship to M.F.; Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES) CREAL 0966C0331 for the “Projet Tri-national Trafic, Air, Bruit et Santé” (TRI-TABS) study; and the Young Researchers Exchange Programme of the European Network on Noise and Health (ENNAH

    Association of long-term exposure to traffic-related air pollution with blood pressure and hypertension in an adult population-based cohort in Spain (the REGICOR study)

    No full text
    Background: Long-term exposure to traffic-related air pollution may increase blood pressure (BP) and induce hypertension. However, evidence supporting these associations is limited, and they may be confounded by exposure to traffic noise and biased due to inappropriate control for use of BP-lowering medications. Objectives: We evaluated the associations of long-term traffic-related air pollution with BP and prevalent hypertension, adjusting for transportation noise and assessing different methodologies to control for BP-lowering medications. Methods: We measured systolic (SBP) and diastolic BP (DBP) at baseline (years 2003–2005) in 3,700 participants, 35–83 years of age, from a population-based cohort in Spain. We estimated home outdoor annual average concentrations of nitrogen dioxide (NO2) with a land-use regression model. We used multivariate linear and logistic regression. Results: A 10-μg/m3 increase in NO2 levels was associated with 1.34 mmHg (95% CI: 0.14, 2.55) higher SBP in nonmedicated individuals, after adjusting for transportation noise. Results were similar in the entire population after adjusting for medication, as commonly done, but weaker when other methods were used to account for medication use. For example, when 10 mmHg were added to the measured SBP levels of medicated participants, the association was β = 0.78 (95% CI: –0.43, 2.00). NO2 was not associated with hypertension. Associations of NO2 with SBP and DBP were stronger in participants with cardiovascular disease, and the association with SBP was stronger in those exposed to high traffic density and traffic noise levels ≥ 55 dB(A). Conclusions: We observed a positive association between long-term exposure to NO2 and SBP, after adjustment for transportation noise, which was sensitive to the methodology used to account for medication.This study was supported by funding from Marató 081632, Centre for Research in Environmental Epidemiology (CREAL) Pilot Project Funds 2009; Centro de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP) Pilot Project Funds 2008 (AA08_15); Instituto de Salud Carlos III (ISCIII): Fondo de Investigación Sanitaria (FIS) PI060258, Red de Investigación Cardiovascular–Programa Heracles RD 12/0042, Red de Investigación en Actividades Preventivas y Promoción de la Salud (RedIAPP) RD 06/0018, and a fellowship to M.F.; Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES) CREAL 0966C0331 for the “Projet Tri-national Trafic, Air, Bruit et Santé” (TRI-TABS) study; and the Young Researchers Exchange Programme of the European Network on Noise and Health (ENNAH
    corecore