82 research outputs found

    Willingness to pay entrance fees to natural attractions : an Icelandic case study

    Get PDF
    2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    A rare case of abdominal cocoon

    Get PDF
    Abdominal cocoon is a rare cause of intestinal obstruction usually diagnosed incidentally at laparotomy. It mani- fests by forming a membrane that typically encases the small bowel loops, leading to mechanical obstruction. Preoperative diagnosis is difficult. The etiology of this condition is not well understood; however, it is a form of chronic irritation and inflammation. METHOD: A 33 years old male, from Bangladesh, presented to our emergency department complaining of abdominal pain, nausea, and vomiting. CT abdomen shows a picture of intestinal obstruction at the level of the small intestine. Intraoperative findings showed encapsulation of small bowel by a dense whitish membrane as a cocoon. Histological exam- ination showed a granulomatous peritonitis and Ascaris Lumbricoides in the bowel resected. RESULTS AND CONCLUSIONS: The preoperative diagnosis of abdominal cocoon is difficult and hence, the diagnosis is usu- ally confirmed by laparotomy. Surgery remains the cornerstone in the management of abdominal cocoon. The pathogen- esis of abdominal cocoon remains elusive and has been associated with several conditions. The initial diagnosis of our patient was bowel obstruction from cocoon syndrome (CT and intraoperative findings) probably primitive, and only his- tologically proved granulomatous peritonitis associated with the presence of the parasite

    Libration-induced Orbit Period Variations Following the DART Impact

    Get PDF
    The Double Asteroid Redirection Test (DART) mission will be the first test of a kinetic impactor as a means of planetary defense. In late 2022, DART will collide with Dimorphos, the secondary in the Didymos binary asteroid system. The impact will cause a momentum transfer from the spacecraft to the binary asteroid, changing the orbit period of Dimorphos and forcing it to librate in its orbit. Owing to the coupled dynamics in binary asteroid systems, the orbit and libration state of Dimorphos are intertwined. Thus, as the secondary librates, it also experiences fluctuations in its orbit period. These variations in the orbit period are dependent on the magnitude of the impact perturbation, as well as the system’s state at impact and the moments of inertia of the secondary. In general, any binary asteroid system whose secondary is librating will have a nonconstant orbit period on account of the secondary’s fluctuating spin rate. The orbit period variations are typically driven by two modes: a long period and a short period, each with significant amplitudes on the order of tens of seconds to several minutes. The fluctuating orbit period offers both a challenge and an opportunity in the context of the DART mission. Orbit period oscillations will make determining the post-impact orbit period more difficult but can also provide information about the system’s libration state and the DART impact

    Libration-induced Orbit Period Variations Following the DART Impact

    Get PDF
    The Double Asteroid Redirection Test (DART) mission will be the first test of a kinetic impactor as a means of planetary defense. In late 2022, DART will collide with Dimorphos, the secondary in the Didymos binary asteroid system. The impact will cause a momentum transfer from the spacecraft to the binary asteroid, changing the orbit period of Dimorphos and forcing it to librate in its orbit. Owing to the coupled dynamics in binary asteroid systems, the orbit and libration state of Dimorphos are intertwined. Thus, as the secondary librates, it also experiences fluctuations in its orbit period. These variations in the orbit period are dependent on the magnitude of the impact perturbation, as well as the system’s state at impact and the moments of inertia of the secondary. In general, any binary asteroid system whose secondary is librating will have a nonconstant orbit period on account of the secondary’s fluctuating spin rate. The orbit period variations are typically driven by two modes: a long period and a short period, each with significant amplitudes on the order of tens of seconds to several minutes. The fluctuating orbit period offers both a challenge and an opportunity in the context of the DART mission. Orbit period oscillations will make determining the post-impact orbit period more difficult but can also provide information about the system’s libration state and the DART impact

    An exploratory study looking at the relationship marketing techniques used in the music festival industry

    Get PDF
    There are current issues and trends in the music festival market, which may affect the success of an event, and market saturation is at the forefront of these issues. Previous literature, maintaining the need for a marketing approach to festivals, identifi es the need for maintaining strong stakeholder relationships in order to succeed in a business environment; attention has been focused to the theory of relationship marketing (RM) because of the recognition that this practice is complementary to the marketing of festivals. The very nature of the music festival as an annual, usually, 4-day event means that effective marketing is needed to keep connections with the consumer throughout the year. This article focuses on the RM techniques utilised within the music festival industry from the viewpoint of the festival organiser in an attempt to establish how festival organisations value and monitor organisational relationships. This article explores the extent to which these relationships are valued and managed; furthermore, the variations between these intricate relationships are considered by focusing on those held with the organisation ’ s consumers and sponsors, the results of which have provided the ability to establish the importance and relevance of RM to the industry and further identify the marketing communication methods employed to establish and maintain such relationships. In-depth, convergent interviews have been conducted with a segment of music festival organisers from a range of events. The results have been integrated with the study of current literature to best exemplify these issues. It has been established that RM has a strong role in today ’ s commercial and independent music festival industry; technological advances are enabling the organiser to support online relationships further and increase consumer loyalty. There is a need to expand the research further because of the complexity of organisational relationships and the varying categories of festivals

    Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos

    Get PDF
    The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on 26 September 2022 as a planetary defence test1. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defence, intended to validate kinetic impact as a means of asteroid deflection. Here we report a determination of the momentum transferred to an asteroid by kinetic impact. On the basis of the change in the binary orbit period2, we find an instantaneous reduction in Dimorphos’s along-track orbital velocity component of 2.70 ± 0.10 mm s−1, indicating enhanced momentum transfer due to recoil from ejecta streams produced by the impact3,4. For a Dimorphos bulk density range of 1,500 to 3,300 kg m−3, we find that the expected value of the momentum enhancement factor, β, ranges between 2.2 and 4.9, depending on the mass of Dimorphos. If Dimorphos and Didymos are assumed to have equal densities of 2,400 kg m−3, β=3.61+0.19−0.25(1σ). These β values indicate that substantially more momentum was transferred to Dimorphos from the escaping impact ejecta than was incident with DART. Therefore, the DART kinetic impact was highly effective in deflecting the asteroid Dimorphos

    Dimorphos's Orbit Period Change and Attitude Perturbation due to Its Reshaping after the DART Impact

    Get PDF
    On 2022 September 26 (UTC), NASA's Double Asteroid Redirection Test (DART) mission achieved a successful impact on Dimorphos, the secondary component of the near-Earth binary asteroid system (65803) Didymos. Subsequent ground-based observations suggest a significant reshaping of Dimorphos, with its equatorial axis ratio changing from 1.06 to ∟1.3. Here we report the effects of this reshaping event on Dimorphos's orbit and attitude. Given the reported reshaping magnitude, our mutual dynamics simulations show that approximately 125 s of the observed 33 minute orbit period change after the DART impact may have resulted from reshaping. This value, however, is sensitive to the precise values of Dimorphos's post-impact axis ratios and may vary by up to 2 times that amount, reaching approximately 250 s within the current uncertainty range. While the rotational state of the body is stable at the currently estimated axis ratios, even minor changes in these ratios or the introduction of shape asymmetry can render its attitude unstable. The perturbation to Dimorphos's orbital and rotational state delivered by the impact directly, combined with any reshaping, leads to a strong possibility for a tumbling rotation state. To accurately determine the momentum enhancement factor (β) through measurements by the European Space Agency's Hera spacecraft and to evaluate the effectiveness of the kinetic deflection technique for future planetary defense initiatives, the effects of reshaping should not be overlooked.This work was supported in part by the DART mission, NASA contract 80MSFC20D0004 to JHU/APL. R.N. acknowledges support from NASA/FINESST (NNH20ZDA001N). S.D.R. and M.J. acknowledge support from the Swiss National Science Foundation (project number 200021_207359). P.M. acknowledges funding support from the French Space Agency CNES and The University of Tokyo. P.P. acknowledges support from the grant Agency of the Czech Republic, grant 23-04946S. S.R.S. acknowledges support from the DART Participating Scientist Program, grant No. 80NSSC22K0318. A.C.B. and P.Y.L. acknowledge funding by the NEO-MAPP project 717 GA 870377, EC H2020-SPACE-718 2018-2020/H2020-SPACE-2019, and by MICINN (Spain) PGC2021, PID2021-125883NB-C21. P.Y.L. acknowledges funding from the European Space Agency OSIP contract N.4000136043/21/NL/GLC/my. A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (No. 80NM0018D0004)

    Multicentre International Registry of Open Surgical Versus Percutaneous Upper Extremity Access During Endovascular Aortic Procedures

    Get PDF
    Objective: To investigate access failure (AF) and stroke rates of aortic procedures performed with upper extremity access (UEA), and compare results of open surgical vs. percutaneous UEA techniques with closure devices. Methods: A physician initiated, multicentre, ambispective, observational registry (SUPERAXA - NCT04589962) was carried out of patients undergoing aortic procedures requiring UEA, including transcatheter aortic valve replacement, aortic arch, and thoraco-abdominal aortic endovascular repair, pararenal parallel grafts, renovisceral and iliac vessel repair. Only vascular procedures performed with an open surgical or percutaneous (with a suture mediated vessel closure device) UEA were analysed. Risk factors and endpoints were classified according to the Society for Vascular Surgery and VARC-3 (Valve Academic Research Consortium) reporting standards. A logistic regression model was used to identify AF and stroke risk predictors, and propensity matching was employed to compare the UEA closure techniques. Results: Sixteen centres registered 1 098 patients (806 men [73.4%]; median age 74 years, interquartile range 69 – 79 years) undergoing vascular procedures using open surgical (76%) or percutaneous (24%) UEA. Overall AF and stroke rates were 6.8% and 3.0%, respectively. Independent predictors of AF by multivariable analysis included pacemaker ipsilateral to the access (odds ratio [OR] 3.8, 95% confidence interval [CI] 1.2 – 12.1; p =.026), branched and fenestrated procedure (OR 3.4, 95% CI 1.2 – 9.6; p =.019) and introducer internal diameter ≥ 14 F (OR 6.6, 95% CI 2.1 – 20.7; p =.001). Stroke was associated with female sex (OR 3.4, 95% CI 1.3 – 9.0; p =.013), vessel diameter > 7 mm (OR 3.9, 95% CI 1.1 – 13.8; p =.037), and aortic arch procedure (OR 7.3, 95% CI 1.7 – 31.1; p =.007). After 1:1 propensity matching, there was no difference between open surgical and percutaneous cohorts. However, a statistically significantly higher number of adjunctive endovascular procedures was recorded in the percutaneous cohort (p <.001). Conclusion: AF and stroke rates during complex aortic procedures employing UEA are non-negligible. Therefore, selective use of UEA is warranted. Percutaneous access with vessel closure devices is associated with similar complication rates, but more adjunctive endovascular procedures are required to avoid surgical exposure

    After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission

    Get PDF
    NASA’s Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos’s response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing that a particular direction-specific β will be directly determined by the DART results, and that a related direction-specific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos’s near-surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction
    • …
    corecore