46 research outputs found

    Cobalt ferrite nanoparticles under high pressure

    Get PDF
    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe2O4) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B0 = 204 GPa) is considerably larger than the value previously reported for bulk CoFe2O4 (B0 = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B0 = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.Fil: Saccone, Fabio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; ArgentinaFil: Ferrari, Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; ArgentinaFil: Errandonea, Daniel. Universidad de Valencia; EspañaFil: Florencia Grinblat. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; ArgentinaFil: Bilovol, Vitaliy. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; ArgentinaFil: Agouram, S.. Universidad de Valencia; Españ

    Optical properties and microstructure of 2.02-3.30 eV ZnCdO nanowires: Effect of thermal annealing

    Get PDF
    International audienceZnCdO nanowires with up to 45% Cd are demonstrated showing room temperature photoluminescence (PL) down to 2.02 eV and a radiative efficiency similar to that of ZnO nanowires. Analysis of the microstructure in individual nanowires confirms the presence of a single wurtzite phase even at the highest Cd contents, with a homogeneous distribution of Cd both in the longitudinal and transverse directions. Thermal annealing at 550 C yields an overall improvement of the PL, which is blue-shifted as a result of the homogeneous decrease of Cd throughout the nanowire, but the single wurtzite structure is fully maintained

    NiO diluted in high surface area TiO2 as efficient catalysts for the oxidative dehydrogenation of ethane

    Full text link
    [EN] Catalysts consisting of NiO diluted in high surface area TiO2 can be as efficient in the oxidative dehydrogenation of ethane as the most selective NiO-promoted catalysts reported previously in the literature. By selecting the titania matrix and the NiO loading, yields to ethylene over 40% have been obtained. In the present article, three different titanium oxides (TiO2) have been employed as supports or diluters of nickel oxide and have been tested in the oxidative dehydrogenation of ethane to ethylene. All TiO2 used present anatase as the main crystalline phase and different surface areas of 11,55 and 85 m(2) g(-1). It has been observed that by selecting an appropriate nickel loading and the titanium oxide extremely high selectivity towards ethylene can be obtained. Thus, nickel oxide supported on TiO2 with high surface areas (i.e. 55 and 85 m(2) g(-1)) have resulted to give the best catalytic performance although the optimal nickel loading is different for each case. The optimal catalyst has been obtained for NiO-loadings up to 5-10 theoretical monolayers regardless of the TiO2 employed. Free TiO2 is inactive whereas unsupported NiO is active and unselective (forming mainly carbon dioxide) and, therefore, unmodified NiO particles have to be avoided in order to obtain the optimal catalytic performance. The use of low surface area titania (11 m(2) g(-1)) have led to the lowest selectivity to olefin due to the presence of an excess of free NiO particles. (C) 2017 Elsevier B.V. All rights reserved.The authors would like to acknowledge the DGICYT in Spain CTQ2012-37925-C03-2, CTQ2015-68951-C3-1-R, CTQ2015-68951-C3-3-R and SEV-2012-0267 Projects for financial support. D.D. also thanks Severo Ochoa Excellence fellowship (SVP-2014-068669). We also thank the University of Valencia (UV-INV-AE-16-484416 project) and SCSIE-UV for assistanceSanchis, R.; Delgado-Muñoz, D.; Agouram, S.; Soriano Rodríguez, MD.; Vázquez, MI.; Rodriguez-Castellon, E.; Solsona, B.... (2017). NiO diluted in high surface area TiO2 as efficient catalysts for the oxidative dehydrogenation of ethane. Applied Catalysis A General. 536:18-26. https://doi.org/10.1016/j.apcata.2017.02.012S182653

    White light emission from lead-free mixed-cation doped Cs2SnCl6 nanocrystals

    Get PDF
    We have designed a synthesis procedure to obtain Cs2SnCl6 nanocrystals (NCs) doped with metal ion(s) to emit visible light. Cs2SnCl6 NCs doped with Bi3+, Te4+ and Sb3+ ions emitted blue, yellow and red light, respectively. In addition, NCs simultaneously doped with Bi3+ and Te4+ ions were synthesized in a single run. Combination of both dopant ions together gives rise to the white emission. The photoluminescence quantum yields of the blue, yellow and white emissions are up to 26.5, 28, and 16.6%, respectively under excitation at 350, 390, and 370 nm. Pure white-light emission with CIE chromaticity coordinates of (0.32, 0.33) and (0.32, 0.32) at 340 and 370 nm excitation wavelength, respectively, was obtained. The as-prepared NCs were found to demonstrate a long-time stability, resistance to humidity, and an ability to be well-dispersed in polar solvents without property degradation due to their hydrophilicity, which could be of significant interest for wide application purposes

    Microstructure and mechanical effects of spark plasma sintering in alumina monolithic ceramics

    Full text link
    The specific effects of spark plasma sintering (SPS) on the creep behavior, microstructure and mechanical properties of alumina monolithic ceramic were investigated. SPS introduces strains that concentrate at grain boundaries and inhibit crack growth, resulting in an improvement in the flexural strength and fracture toughness. However, creep blocks grain boundary movements and decreases the reliability of the material. These strains can be removed by a post-sintering thermal treatment, which plays an important role in the distribution of dislocations. Crown Copyright (c) 2012 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.The authors would like to acknowledge the help of the EU for the financial support received under the IP-NANOKER NMP3-CT-2005-515784. A.B. acknowledges the Spanish Ministry of Science and Innovation for her Juan de la Cierva Contract (JCI-2011-10498). The authors are grateful to the Central Support Service in Experimental Research (SCSIE), University of Valencia for providing the HR-TEM facility.Alvarez-Clemares, I.; Borrell Tomás, MA.; Agouram, S.; Torrecillas, R.; Fernandez, A. (2013). Microstructure and mechanical effects of spark plasma sintering in alumina monolithic ceramics. Scripta Materialia. 68(8):603-606. https://doi.org/10.1016/j.scriptamat.2012.12.016S60360668

    Low temperature total oxidation of toluene by bimetallic Au-Ir catalysts

    Get PDF
    Intimate contact between gold and iridium nanoparticles supported on TiO2 provides a synergetic effect leading to low temperature VOC oxidation activity.The authors would like to acknowledge the UK Engineering and Physical Science Research Council (EPSRC, grant number EP/L020432/2), PAPIIT-UNAM (IN105416 grant) and CONACYT-APN (1216 grant) for funding

    Preferred growth direction by PbS nanoplatelets preserves perovskite infrared light harvesting for stable, reproducible, and efficient solar cells

    Get PDF
    Formamidinium-based perovskite solar cells (PSCs) present the maximum theoretical efficiency of the lead perovskite family. However, formamidinium perovskite exhibits significant degradation in air. The surface chemistry of PbS has been used to improve the formamidinium black phase stability. Here, the use of PbS nanoplatelets with (100) preferential crystal orientation is reported, to potentiate the repercussion on the crystal growth of perovskite grains and to improve the stability of the material and consequently of the solar cells. As a result, a vertical growth of perovskite grains, a stable current density of 23 mA cm(-2), and a stable incident photon to current efficiency in the infrared region of the spectrum for 4 months is obtained, one of the best stability achievements for planar PSCs. Moreover, a better reproducibility than the control device, by optimizing the PbS concentration in the perovskite matrix, is achieved. These outcomes validate the synergistic use of PbS nanoplatelets to improve formamidinium long-term stability and performance reproducibility, and pave the way for using metastable perovskite active phases preserving their light harvesting capability

    Optimizing both catalyst preparation and catalytic behaviour for the oxidative dehydrogenation of ethane of Ni-Sn-O catalysts

    Full text link
    [EN] Bulk Ni-Sn-O catalysts have been synthesized, tested in the oxidative dehydrogenation of ethane and characterized by several physicochemical techniques. The catalysts have been prepared by evaporation of the corresponding salts using several additives in the synthesis gel, i.e. ammonium hydroxide, nitric acid, glyoxylic acid or oxalic acid, in the synthesis gel. The catalysts were finally calcined at 500 degrees C in air. Important changes in the catalytic behaviour have been observed depending on the additive. In fact, an important improvement in the catalytic performance is observed especially when some additives, such as glyoxylic or oxalic acid, are used. Thus the productivity to ethylene multiplies by 6 compared to the reference Ni-Sn-O catalyst if appropriate templates are used, and this is the result of an improvement in both the catalytic activity and the selectivity to ethylene. This improved performance has been explained in terms of the decrease of the crystallite size (and the increase in the surface area of catalyst) as well as the modification of the lattice parameter of nickel oxide.The authors would like to acknowledge the DGICYT in Spain (CTQ2015-68951-C3-1-R and CTQ2012-37925-C03-2) for financial support. We also thank the University of Valencia and SCSIE-UV for assistanceSolsona Espriu, BE.; López Nieto, JM.; Agouram, S.; Soriano Rodríguez, MD.; Dejoz, A.; Vázquez, MI.; Concepción Heydorn, P. (2016). Optimizing both catalyst preparation and catalytic behaviour for the oxidative dehydrogenation of ethane of Ni-Sn-O catalysts. Topics in Catalysis. 59(17-18):1564-1572. https://doi.org/10.1007/s11244-016-0674-zS156415725917-18Heracleous E, Lee AF, Wilson K, Lemonidou AA (2005) J Catal 231:159–171Heracleous E, Lemonidou AA (2006) J Catal 237:162–174Savova B, Loridant S, Filkova D, Millet JMM (2010) Appl Catal A 390:148–157Heracleous E, Lemonidou AA (2010) J Catal 270:67–75Solsona B, Nieto JML, Concepcion P, Dejoz A, Ivars F, Vazquez MI (2011) J Catal 280:28–39Skoufa Z, Heracleous E, Lemonidou AA (2012) Catal Today 192:169–176Zhu H, Ould-Chikh S, Anjum DH, Sun M, Biausque G, Basset JM, Caps V (2012) J Catal 285:292–303Skoufa Z, Heracleous E, Lemonidou AA (2012) Chem Eng Sci 84:48–56Zhu H, Rosenfeld DC, Anjum DH, Caps V, Basset JM (2015) ChemSusChem 8:1254–1263Heracleous E, Lemonidou AA (2015) J Catal 322:118–129Solsona B, Concepcion P, Demicol B, Hernandez S, Delgado JJ, Calvino JJ, Nieto JML (2012) J Catal 295:104–114Nieto JML, Solsona B, Grasselli RK, Concepción P (2014) Top Catal 57:1248–1255Popescu I, Skoufa Z, Heracleous E, Lemonidou AA, Marcu IC (2015) PCCP 17:8138–8147Zhang X, Gong Y, Yu G, Xie Y (2002) J Mol Catal A 180:293–298Popescu I, Skoufa Z, Heracleous E, Lemonidou A, Marcu I-C (2015) Phys Chem Chem Phys 17:8138–8147Nakamura KI, Miyake T, Konishi T, Suzuki T (2006) J Mol Catal A 260:144–151Solsona B, Dejoz AM, Vazquez MI, Ivars F, Nieto JML (2009) Top Catal 52:751–757Bortolozzi JP, Gutierrez LB, Ulla MA (2013) Appl Catal A 452:179–188Takeguchi T, Furukawa S, Inoue M (2001) J Catal 202:14–24Richardson JT, Turk B, Twigg MV (1996) Appl Catal 148:97–112Biju V, Khadar MA (2002) J Nanopart Res 4:247–253Van Veenendaal MA, Sawatzky GA (1993) Phys Rev Lett 70:2459–2462Vedrine JC, Hollinger G, Duc TM (1978) J Phys Chem 82:1515–1520Salagre P, Fierro JLG, Medina F, Sueiras JE (1996) J Mol Catal A 106:125–13

    Ceramic-metal nanocomposites: Lyophilization and spark plasma sintering

    Get PDF
    Trabajo presentado a la 19th International Conference on Composite Materials celebrada en Montreal del 28 de julio al 2 de agosto de 2013.Peer Reviewe

    Ceramic/metal nanocomposites by lyophilization: Processing and HRTEM study

    Get PDF
    5 páginas, 8 figuras, 1 tabla.-- El pdf del artículo es el manuscrito de autor.This work describes a wet-processing route based on spray-freezing and subsequent lyophilization designed to obtain nanostructured ceramic/metal powders. Starting from the ceramic powder and the corresponding metal salt, a water-based suspension is sprayed on liquid nitrogen. The frozen powders are subsequently freeze-dried, calcined and reduced. The material was analyzed using X-ray diffraction analysis at all stages. High resolution transmission electron microscopy studies showed a uniform distribution of metal nanoparticles on the ceramic grain surfaces, good interfaces and high crystallinity, with an average metal particle size in the nanometric range.This work was supported by the Spanish Ministry of Science and Innovation (MICINN) under the project MAT2009-14542-C02 and the Government of the Principality of Asturias through PCTI and ERDF (European Regional Development Fund) 2007-2013 under project PC10-65. C.F. Gutierrez- Gonzalez acknowledges CSIC and ESF for the concession of a JAE-Doc 2009 grant. S. Agouram thanks the Spanish Ministry of Science and European Social Fund for financial support.Peer reviewe
    corecore