71 research outputs found

    Gut Microbiota Status in COVID-19: An Unrecognized Player?

    Get PDF
    Infection with the SARS-CoV-2 virus causes cardiopulmonary and vascular complications, ranging in severity. Understanding the pathogenic mechanisms of the novel SARS-CoV2 infection and progression can provide potential novel targets for its prevention and/or treatment. Virus microbiota reciprocal interactions have been studied in a variety of viral infections. For example, the integrity of Coronavirus particles can be disrupted by surfactin, a bacterial surface molecule that targets other viruses, including that of influenza A. In this light, intestinal microbiota likely influences COVID-19 virulence, while from its side SARS-CoV-2 may affect the intestinal microbiome promoting dysbiosis and other deleterious consequences. Hence, the microbiota pre-existing health status and its alterations in the course of SARS-CoV-2 infection, are likely to play an important, still underscored role in determining individual susceptibility and resilience to COVID-19. Indeed, the vast majority of COVID-19 worst clinical conditions and fatalities develop in subjects with specific risk factors such as aging and the presence of one or more comorbidities, which are intriguingly characterized also by unhealthy microbiome status. Moreover, these comorbidities require complex pharmacological regimens known as "polypharmacy" that may further affect microbiota integrity and worsen the resilience to viral infections. This complex situation may represent a further and underestimated risk with regard to COVID-19 clinical burden for the elderly and comorbid people. Here, we discuss the possible biological, physiopathological, and clinical implications of gut microbiota in COVID-19 and the strategies to improve/maintain its healthy status as a simple and adjunctive strategy to reduce COVID-19 virulence and socio-sanitary burden

    Cancer Related Anemia: An Integrated Multitarget Approach and Lifestyle Interventions

    Get PDF
    Cancer is often accompanied by worsening of the patient's iron profile, and the resulting anemia could be a factor that negatively impacts antineoplastic treatment efficacy and patient survival. The first line of therapy is usually based on oral or intravenous iron supplementation; however, many patients remain anemic and do not respond. The key might lie in the pathogenesis of the anemia itself. Cancer-related anemia (CRA) is characterized by a decreased circulating serum iron concentration and transferrin saturation despite ample iron stores, pointing to a more complex problem related to iron homeostatic regulation and additional factors such as chronic inflammatory status. This review explores our current understanding of iron homeostasis in cancer, shedding light on the modulatory role of hepcidin in intestinal iron absorption, iron recycling, mobilization from liver deposits, and inducible regulators by infections and inflammation. The underlying relationship between CRA and systemic low-grade inflammation will be discussed, and an integrated multitarget approach based on nutrition and exercise to improve iron utilization by reducing low-grade inflammation, modulating the immune response, and supporting antioxidant mechanisms will also be proposed. Indeed, a Mediterranean-based diet, nutritional supplements and exercise are suggested as potential individualized strategies and as a complementary approach to conventional CRA therapy

    Nutraceuticals and Physical Activity as Antidepressants: The Central Role of the Gut Microbiota

    Get PDF
    Major depressive disorder (MDD) is a common mental illness. Evidence suggests that the gut microbiota play an essential role in regulating brain functions and the pathogenesis of neuropsychiatric diseases, including MDD. There are numerous mechanisms through which the gut microbiota and brain can exchange information in a continuous, bidirectional communication. Current research emphasizes the interexchange of signals influenced by the gut microbiota that are detected and transduced in information from the gut to the nervous system involving neural, endocrine, and inflammatory mechanisms, suggesting a relationship between oxidative stress and the pathophysiology of MDD via the hyperactivation of inflammatory responses. Potential sources of inflammation in the plasma and hippocampus of depressed individuals could stem from increases in intestinal permeability. Some nutraceuticals, such as specific probiotics, namely psychobiotics, polyphenols, carotenoids, butyrate, and prebiotics, have been demonstrated to exert an antidepressant activity, but most of them need to be metabolized and activated by gut microorganisms. By inducing changes in the gut microbiota composition, physical exercise might also exert a role in alleviating depression-like symptoms. The mutual relationships among nutraceuticals, exercise, and depression will be discussed, and the potential role of the gut microbiota as a therapeutic target to treat depression will be explored

    The expression analysis of mouse interleukin-6 splice variants argued against their biological relevance

    Get PDF
    Alternative splicing generates several interleukin-6 (IL-6) isoforms; for them an antagonistic activity to the wild-type IL-6 has been proposed. In this study we quantified the relative abundance of IL-6 mRNA isoforms in a panel of mouse tissues and in C2C12 cells during myoblast differentiation or after treatment with the Ca2+ ionophore A23187, the AMP-mimetic AICAR and TNF-alpha. The two mouse IL-6 isoforrns identified, IL-6 delta 5 (deletion of the first 58 bp of exon 5) and IL-6 delta 3 (lacking exon 3), were not conserved in rat and human, did not exhibit tissue specific regulation, were expressed at low levels and their abundance closely correlated to that of full-length IL-6. Species-specific features of the IL-6 sequence, such as the presence of competitive 3' acceptor site in exon 5 and insertion of retrotransposable elements in intron 3, could explain the production of IL-6 delta 5 and IL-6 delta 3. Our results argued against biological significance for mouse IL-6 isoforms

    Nine weeks of high-intensity indoor cycling training induced changes in the microbiota composition in non-athlete healthy male college students

    Get PDF
    Background: The gut microbiota constitutes a dynamic microbial system constantly challenged by environmental conditions, including physical exercise. Limited human studies suggest that exercise could play a beneficial role for gut health, increasing microbial diversity, even if the effects of exercise on gut microbial microorganisms depends on its intensity and duration. This study aimed to investigate the effects of nine weeks of high-intensity interval exercise on gut microbiota composition in healthy young adults. Methods: The gut microbiota composition of seventeen healthy male college students was analysed before and after nine weeks of high-intensity interval cycling training by 16S rRNA amplicon sequencing. PERMANOVA for repeated measures was used to test pre-post differences in the relative abundance of all taxonomic levels, and correlations between variations in microbial composition and physical and dietary features were also assessed. Results: Physical exercise induced changes in microbiota composition, at all taxonomic levels analysed (phyla: F [1, 32]=3.97, p=0.029; classes: F [1, 32]=3.39, p=0.033, orders: F [1, 32]=3.17, p=0.044, families: F [1, 32]=1.54, p=0.037, genera: F [1, 32]=1.46, p=0.015, species: F [1, 32]=1.38, p=0.007). Conversely, no differences were found between pre and post-training conditions for microbial community richness (Chao1: V=105, p=0.06) or diversity (Shannon index: V=62, p=0.52; Simpson index: V=59, p=0.43). Changes in the relative abundance of eighteen genera were correlated to changes of twenty environmental factors grouped in physical features, sport-related features, and dietary features. Conclusions: Nine weeks of high-intensity exercise induced modifications in gut microbiota composition in healthy male college students, shifting the gut microbial population towards a healthier microbiome with benefit to human health in general

    CARACTERIZAÇÃO, POR CROMATOGRAFIA EM CAMADA DELGADA, DOS COMPOSTOS FENÓLICOS PRESENTES EM PEDÚNCULOS DE CAJU (Anacardium ocidentale L.)

    Get PDF
    O objetivo deste trabalho foi a determinação dos compostos fenólicos relacionados com a cor e com o sabor residual dos pedúnculos de clones de cajueiro anão precoce. As antocianinas e os taninos foram determinados por cromatografia em papel e, para identificação de lipídios fenólicos desenvolveuse metodologia simples e eficiente, utilizando cromatografia em camada delgada. As antocianidinas foram os principais flavonóides encontrados nas películas dos pedúnculos de caju. Dentre estes, a delfinidina foi encontrada em todos os clones, enquanto que a pelargonidina mostrouse intensa nos clones EMBRAPA 51 (vermelho) e CP 76 (avermelhado), não tendo sido encontrada no clone CP 06 (amarelo). A quercetina foi o único flavonol identificado, produzindo manchas intensas nos cromatogramas do clone CP 76. Nos sucos integrais foi encontrado um tanino condensado, associado ao sabor adstringente. No extrato etéreo dos mesmos sucos foi encontrado o ácido anacárdico, associado ao sabor residual, que permanece no suco mesmo após clarificação com gelatina. Abstract The objective of this research was the determination of phenolic compounds associated with color and residual taste in cashew apples through simple and accessible techniques. Anthocyanidins were the most abundant flavonoids found in cashewapple peels by paper chromatography. Delphinidin was found in all the clones, whereas pelargonidin was intense in EMBRAPA 51 (red) and CP 76 (reddish), and was not found in CP 06 (yellow). Only quercetin was identified as flavonol, producing intense spots in the chromatogram of clone CP 76. In all juices, condensed tannins associated with astringency were found. In ether extract of the same juices, the anacardic acid was detected, which may be associated to the residual taste, that remains in the juice even after clarification with gelatin

    Effects of a commercially available branched-chain amino acid-alanine-carbohydrate-based sports supplement on perceived exertion and performance in high intensity endurance cycling tests

    Get PDF
    Background:Sports nutritional supplements containing branched-chain amino acids (BCAA) have been widelyreported to improve psychological and biological aspects connected to central fatigue and performance inendurance exercise, although the topic is still open to debate. The aim of the present study was to determinewhether the intake of a commercially available BCAA-based supplement, taken according to the manufacturer’srecommendations, could affect the rating of perceived exertion (RPE) and performance indexes at the beginning(1d) and end of a 9-week (9w) scheduled high intensity interval training program, with an experimental approachintegrating the determination of psychometric, performance, metabolic and blood biochemical parameters.Methods:This was a randomized double-blind placebo-controlled study. Thirty-two untrained, healthy young adults(20 males and 12 female) were enrolled. A high-intensity endurance cycling (HIEC) test was used to induce fatigue inthe participants: HIEC consisted in ten 90 s sprints interspersed by ten 3 min recovery phases and followed by a finalstep time to exhaustion was used. In parallel with RPE, haematological values (creatine kinase, alanine, BCAA,tryptophan, ammonia and glucose levels), and performance indexes (maximal oxygen consumption - VO2max,powerassociated with lactate thresholds - WLT1,WLT2and time to exhaustion - TTE) were assessed. All subject took thesupplement (13.2 g of carbohydrates; 3.2 g of BCAA and 1.6 g of L-alanine per dose) or placebo before each test andtraining session. Dietary habits and training load were monitored during the entire training period.Results:The administration of the supplement (SU) at 1d reduced RPE by 9% during the recovery phase, as comparedto the placebo (PL); at 9w the RPE scores were reduced by 13 and 21% during the sprint and recovery phase,respectively; at 9w, prolonged supplement intake also improved TTE and TRIMP. SU intake invariably promoted a rapidincrease (within 1 h) of BCAA serum blood levels and prevented the post-HIEC tryptophan: BCAA ratio increase foundin the PL group, at both 1d and 9w. There was no difference in dietary habits between groups and those habits didnot change over time; no difference in glycemia was found between SU and PL. VO2max,WLT1and WLT2valuesimproved over time, but were unaffected by supplement intake. Conclusions:On the whole, these results suggest that i) the intake of the BCAA-based commercially availablesupplement used in this study reduces RPE as a likely consequence of an improvement in the serum tryptophan: BCAAratio; ii) over time, reduced RPE allows subjects to sustain higher workloads, leading to increased TRIMP and TTE

    Atlantic mammal traits: a dataset of morphological traits of mammals in the atlantic forest of south America

    Get PDF
    Measures of traits are the basis of functional biological diversity. Numerous works consider mean species-level measures of traits while ignoring individual variance within species. However, there is a large amount of variation within species and it is increasingly apparent that it is important to consider trait variation not only between species, but also within species. Mammals are an interesting group for investigating trait-based approaches because they play diverse and important ecological functions (e.g., pollination, seed dispersal, predation, grazing) that are correlated with functional traits. Here we compile a data set comprising morphological and life history information of 279 mammal species from 39,850 individuals of 388 populations ranging from −5.83 to −29.75 decimal degrees of latitude and −34.82 to −56.73 decimal degrees of longitude in the Atlantic forest of South America. We present trait information from 16,840 individuals of 181 species of non-volant mammals (Rodentia, Didelphimorphia, Carnivora, Primates, Cingulata, Artiodactyla, Pilosa, Lagomorpha, Perissodactyla) and from 23,010 individuals of 98 species of volant mammals (Chiroptera). The traits reported include body mass, age, sex, reproductive stage, as well as the geographic coordinates of sampling for all taxa. Moreover, we gathered information on forearm length for bats and body length and tail length for rodents and marsupials. No copyright restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications. We also request that researchers and teachers inform us of how they are using the data.Fil: Gonçalves, Fernando. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Bovendorp, Ricardo S.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Beca, Gabrielle. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Bello, Carolina. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Costa Pereira, Raul. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Muylaert, Renata L.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Rodarte, Raisa R.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Villar, Nacho. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Souza, Rafael. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Graipel, Maurício E.. Universidade Federal de Santa Catarina; BrasilFil: Cherem, Jorge J.. Caipora Cooperativa, Florianopolis; BrasilFil: Faria, Deborah. Universidade Estadual de Santa Cruz; BrasilFil: Baumgarten, Julio. Universidade Estadual de Santa Cruz; BrasilFil: Alvarez, Martín R.. Universidade Estadual de Santa Cruz; BrasilFil: Vieira, Emerson M.. Universidade do Brasília; BrasilFil: Cáceres, Nilton. Universidade Federal de Santa María. Santa María; BrasilFil: Pardini, Renata. Universidade de Sao Paulo; BrasilFil: Leite, Yuri L. R.. Universidade Federal do Espírito Santo; BrasilFil: Costa, Leonora Pires. Universidade Federal do Espírito Santo; BrasilFil: Mello, Marco Aurelio Ribeiro. Universidade Federal de Minas Gerais; BrasilFil: Fischer, Erich. Universidade Federal do Mato Grosso do Sul; BrasilFil: Passos, Fernando C.. Universidade Federal do Paraná; BrasilFil: Varzinczak, Luiz H.. Universidade Federal do Paraná; BrasilFil: Prevedello, Jayme A.. Universidade do Estado de Rio do Janeiro; BrasilFil: Cruz-Neto, Ariovaldo P.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Carvalho, Fernando. Universidade do Extremo Sul Catarinense; BrasilFil: Reis Percequillo, Alexandre. Universidade de Sao Paulo; BrasilFil: Paviolo, Agustin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; ArgentinaFil: Duarte, José M. B.. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil. Fundación Oswaldo Cruz; BrasilFil: Bernard, Enrico. Universidade Federal de Pernambuco; BrasilFil: Agostini, Ilaria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; ArgentinaFil: Lamattina, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Ministerio de Salud de la Nación; ArgentinaFil: Vanderhoeven, Ezequiel Andres. Ministerio de Salud de la Nación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentin

    Notulae to the Italian flora of algae, bryophytes, fungi and lichens: 12

    Get PDF
    In this contribution, new data concerning bryophytes, fungi and lichens of the Italian flora are presented. It includes new records, confirmations or exclusions for the bryophyte genera Acaulon, Campylopus, Entosthodon, Homomallium, Pseudohygrohypnum, and Thuidium, the fungal genera Entoloma, Cortinarius, Mycenella, Oxyporus, and Psathyrella and the lichen genera Anaptychia, Athallia, Baeomyces, Bagliettoa, Calicium, Nephroma, Pectenia, Phaeophyscia, Polyblastia, Protoparmeliopsis, Pyrenula, Ramalina, and Sanguineodiscus
    corecore