51 research outputs found
Constraints on the Orbital Evolution of Triton
We present simulations of Triton's post-capture orbit that confirm the
importance of Kozai-type oscillations in its orbital elements. In the context
of the tidal orbital evolution model, these variations require average
pericenter distances much higher than previously published, and the timescale
for the tidal orbital evolution of Triton becomes longer than the age of the
Solar System. Recently-discovered irregular satellites present a new constraint
on Triton's orbital history. Our numerical integrations of test particles
indicate a timescale for Triton's orbital evolution to be less than yrs
for a reasonable number of distant satellites to survive Triton's passage. This
timescale is inconsistent with the exclusively tidal evolution (time scale of
yrs), but consistent with the interestion with the debris from
satellite-satellite collisions. Any major regular satellites will quickly
collide among themselves after being perturbed by Triton, and the resulting
debris disk would eventually be swept up by Triton; given that the total mass
of the Uranian satellite system is 40% of that of Triton, large scale evolution
is possible. This scenario could have followed either collisional or the
recently-discussed three-body-interaction-based capture.Comment: 10 pages, 4 figures, accepted for ApJ
Embryo impacts and gas giant mergers II: Diversity of Hot Jupiters' internal structure
We consider the origin of compact, short-period, Jupiter-mass planets. We
propose that their diverse structure is caused by giant impacts of embryos and
super-Earths or mergers with other gas giants during the formation and
evolution of these hot Jupiters. Through a series of numerical simulations, we
show that typical head-on collisions generally lead to total coalescence of
impinging gas giants. Although extremely energetic collisions can disintegrate
the envelope of gas giants, these events seldom occur. During oblique and
moderately energetic collisions, the merger products retain higher fraction of
the colliders' cores than their envelopes. They can also deposit considerable
amount of spin angular momentum to the gas giants and desynchronize their spins
from their orbital mean motion. We find that the oblateness of gas giants can
be used to infer the impact history. Subsequent dissipation of stellar tide
inside the planets' envelope can lead to runaway inflation and potentially a
substantial loss of gas through Roche-lobe overflow. The impact of super-Earths
on parabolic orbits can also enlarge gas giant planets' envelope and elevates
their tidal dissipation rate over 100 Myr time scale. Since giant
impacts occur stochastically with a range of impactor sizes and energies, their
diverse outcomes may account for the dispersion in the mass-radius relationship
of hot Jupiters.Comment: 19 pages, 7 figures, 7 tables. Accepted for publication in MNRA
On the Migration of Jupiter and Saturn: Constraints from Linear Models of Secular Resonant Coupling with the Terrestrial Planets
We examine how the late divergent migration of Jupiter and Saturn may have
perturbed the terrestrial planets. We identify six secular resonances between
the nu_5 apsidal eigenfrequency of Jupiter and Saturn and the four
eigenfrequencies of the terrestrial planets (g_{1-4}). We derive analytic upper
limits on the eccentricity and orbital migration timescale of Jupiter and
Saturn when these resonances were encountered to avoid perturbing the
eccentricities of the terrestrial planets to values larger than the observed
ones. If Jupiter and Saturn migrated with eccentricities comparable to their
present day values, smooth migration with exponential timescales characteristic
of planetesimal-driven migration (\tau~5-10 Myr) would have perturbed the
eccentricities of the terrestrial planets to values greatly exceeding the
observed ones. This excitation may be mitigated if the eccentricity of Jupiter
was small during the migration epoch, migration was very rapid (e.g. \tau<~ 0.5
Myr perhaps via planet-planet scattering or instability-driven migration) or
the observed small eccentricity amplitudes of the j=2,3 terrestrial modes
result from low probability cancellation of several large amplitude
contributions. Further, results of orbital integrations show that very short
migration timescales (\tau<0.5 Myr), characteristic of instability-driven
migration, may also perturb the terrestrial planets' eccentricities by amounts
comparable to their observed values. We discuss the implications of these
constraints for the relative timing of terrestrial planet formation, giant
planet migration, and the origin of the so-called Late Heavy Bombardment of the
Moon 3.9+/-0.1 Ga ago. We suggest that the simplest way to satisfy these
dynamical constraints may be for the bulk of any giant planet migration to be
complete in the first 30-100 Myr of solar system history.Comment: Accepted for publication in The Astrophysical Journa
Dynamical Evolution of Planetary Systems
Planetary systems can evolve dynamically even after the full growth of the
planets themselves. There is actually circumstantial evidence that most
planetary systems become unstable after the disappearance of gas from the
protoplanetary disk. These instabilities can be due to the original system
being too crowded and too closely packed or to external perturbations such as
tides, planetesimal scattering, or torques from distant stellar companions. The
Solar System was not exceptional in this sense. In its inner part, a crowded
system of planetary embryos became unstable, leading to a series of mutual
impacts that built the terrestrial planets on a timescale of ~100 My. In its
outer part, the giant planets became temporarily unstable and their orbital
configuration expanded under the effect of mutual encounters. A planet might
have been ejected in this phase. Thus, the orbital distributions of planetary
systems that we observe today, both solar and extrasolar ones, can be different
from the those emerging from the formation process and it is important to
consider possible long-term evolutionary effects to connect the two.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H.
Deeg & J.A. Belmont
Widespread magma oceans on asteroidal bodies in the early Solar System
No abstract because a letter not a full-length article
Neptune and triton:essential pieces of the solar system puzzle
The planet Neptune and its largest moon Triton hold the keys to major advances across multiple fields of Solar System science. The ice giant Neptune played a unique and important role in the process of Solar System formation, has the most meteorologically active atmosphere in the Solar System (despite its great distance from the Sun), and may be the best Solar System analogue of the dominant class of exoplanets detected to date. Neptune's moon Triton is very likely a captured Kuiper Belt object, holding the answers to questions about the icy dwarf planets that formed in the outer Solar System. Triton is geologically active, has a tenuous nitrogen atmosphere, and is predicted to have a subsurface ocean. However, our exploration of the Neptune system remains limited to a single spacecraft flyby, made by Voyager 2 in 1989. Here, we present the high-level science case for further exploration of this outermost planetary system, based on a white paper submitted to the European Space Agency (ESA) for the definition of the second and third large missions in the ESA Cosmic Vision Programme 2015-2025. We discuss all the major science themes that are relevant for further spacecraft exploration of the Neptune system, and identify key scientific questions in each area. We present an overview of the results of a European-led Neptune orbiter mission analysis. Such a mission has significant scope for international collaboration, and is essential to achieve our aim of understanding how the Solar System formed, and how it works today
- …