24 research outputs found

    Tropaeolin OO as a Chemical Sensor for a Trace Amount of Pd(II) Ions Determination

    Get PDF
    The selective determination of metals in waste solutions is a very important aspect of the industry and environmental protection. Knowledge of the contents and composition of the waste can contribute to design an efficient process separation and recovery of valuable metals. The problematic issue is primarily the correct determination of metals with similar properties such as palladium and platinum. Thus this paper focuses on the development of a selective method that enables Pd(II) determination in the presence of Pt(IV) ions using the azo-dye tropaeolin OO (TR). For this purpose, the process of the metalorganic complex formation and Pd(II) ions determination were studied by using UV–Vis spectrophotometry under different conditions: solvents (water and B-R buffer), pH (2.09–6.09), temperature (20–60 ◦C), anions and cations concentrations. The formed metalorganic complex between Pd and tropaeolin OO allows for distinguishing Pd(II) ions from both platinum complexes, i.e. Pt(II), Pt(IV). Moreover, the proposed method can be applied to solutions containing both chloride and chlorate ions. The obtained characteristic spectrum with two maxima allows the determination of palladium even in the presence of other cations (Na, K, Mg, Zn, Co, Ni, Al) and changed concentrations of Pt(IV) ions. Furthermore, the developed spectrophotometric method for the Pd(II) ions determination using tropaeolin OO is characterized by high selectivity towards palladium ions

    UV-visible and 1H15N^1H-^{15}N NMR spectroscopic studies of colorimetric thiosemicarbazide anion sensors

    Get PDF
    Four model thiosemicarbazide anion chemosensors containing three N – H bonds, substituted with phenyl and/or 4-nitrophenyl units, were synthesised and studied for their anion binding abilities with hydroxide, fl uoride, acetate, dihydrogen phosphate and chloride. The anion binding properties were studied in DMSO and 9 : 1 DMSO – H 2 O by UV-visible absorption and 1 H/ 13 C/ 15 N NMR spectroscopic techniques and corroborated with DFT studies. Signi fi cant changes were observed in the UV-visible absorption spectra with all anions, except for chloride, accompanied by dramatic colour changes visible to the naked eye. These changes were determined to be due to the deprotonation of the central N – H proton and not due to hydrogen bonding based on 1 H/ 15 N NMR titration studies with acetate in DMSO- d 6 – 0.5% water. Direct evidence for deprotonation was con fi rmed by the disappearance of the central thiourea proton and the formation of acetic acid. DFT and charge distribution calculations suggest that for all four compounds the central N – H proton is the most acidic. Hence, the anion chemosensors operate by a deprotonation mechanism of the central N – H proton rather than by hydrogen bonding as is often reported

    Unconventional molecular scale logic devices

    No full text
    Semiconducting nanoparticles offer a versatile platform for various logic devices. Wide band gap semiconductors modified with molecular species are materials with unique optical and electronic properties. The most intriguing property of such systems is photoelectrochemical photocurrent switching (PEPS) effect. The polarity of photocurrent generated within these materials depends on many variables (light, electrode polarization, redox processes). Materials showing the PEPS effect can be used for construction of simple logic gates and other devices
    corecore