32 research outputs found

    Mineralogical and Physico-Chemical Characterizations of Ferruginous Beidellite-Rich Clay from Agadir Basin (Morocco)

    Get PDF
    The mechanism of formation of detrital, beidellite-rich clay occurring in the Agadir basin (Morocco) is well documented, but its detailed characterization is incomplete which limits its application. The aim of the present study was to provide further details of the mineralogical and physico-chemical characteristics of this clay. Bulk raw clay and its Na+-saturated, <2 mm fraction were characterized using chemical, structural, and thermal techniques. Measurements of induced streaming potential (e.g. particle charge) and of specific surface area and porous volume are reported. The raw clay contained carbonate and quartz as associated minerals along with phyllosilicates (<2 mm particle size). X-ray diffraction and scanning electron microscopy analyses showed that the <2 mm fraction was dominated by a dioctahedral smectite. Because dehydroxylation of this mineral occurred at 510ºC, and because it re-expanded in ethylene glycol after Li+-saturation followed by heating at 240ºC for 24 h, the mineral was shown to be a beidellite rather than montmorillonite. This assertion was further supported by 27Al and 29Si magic-angle spinning nuclear magnetic resonance spectra showing predominantly negative charges in the tetrahedral sheets due to notable Al-for-Si substitutions. The chemical composition of the <2 mm fraction showed an Fe2O3 content which was ~7.52 wt.% greater than those of other beidellite occurrences but not so much that it would be identified as a nontronite. The absence of stretching and bending absorption bands corresponding to characteristic (Fe2OH) units in mid-infrared spectra and their corresponding fundamental overtones or combination bands in near-infrared spectra supported this notion. The structural formula of the beidellite in the present study was determined to be (Si7.51Al0.49)(Al2.99Fe0.68Mg0.33) (Ca0.03Na0.54Mg0.11)O20(OH)4, having dioctahedral ferruginous characteristics with almost 60% of the negative charge found in tetrahedral sheets. The cation exchange capacity determined from the structural formula was ~108 meq/100 g. The specific surface area and total pore volume were ~82.2 m2/g and 0.136 cm3/g, respectively. Interestingly, a detrital rather than a hydrothermal-alteration origin, as reported for other beidellite occurrences, explains its natural abundance and emphasizes the great interest in it

    Comprehensive physicochemical study of dioctahedral palygorskite-rich clay from Marrakech High Atlas (Morocco)

    Get PDF
    This study is devoted to the physicochemical and mineralogical characterizations of palygorskite from Marrakech High Atlas, Morocco. The raw clay and its Na?-saturated\ 2 lm fraction were characterized using chemical, structural, and thermal analytical techniques. Measurements of specific surface area and porous volume are reported. The clay fraction was found to be made up of 95 %of palygorskite and 5 % of sepiolite. An original feature of this palygorskite is its deficiency in zeolitic H2O. The half-cell structural formula of its dehydrated form was determined on the basis of 21 oxygens to be (Si7.92Al0.08)(Mg2.15Al1.4Fe0.4Ti0.05h1)(Ca0.03 Na0.08K0.04)O21, while the hydrated form could be formulated as (Si7.97Al0.03)(Mg2.17Al1.46Fe0.40Ti0.05)(Ca0.03Na0.07K0,03) O20.18(OH)1.94(OH2)3.8812.43H2O. These formulas showthat the (Al3??Fe3?)/Mg2? ratio is around 0.84, revealing a pronounced dioctahedral character. Further, inside its octahedral sheet, it was determined that the inner M1 sites are occupied by vacancies, whereas the M2 sites are shared between 90 % of trivalent cations (78 % for Al3? and 22 % for Fe3?), 7.5 % of Mg2+, and 2.5 % of Ti4+, all of them linked to 1.94 of structural hydroxyls. The two remaining Mg2+ by half-cell occupy edge M3 sites and are coordinated to 3.88 molecules of OH2. Channels of this palygorskite are deficient in zeolitic H2O since they contain only 2.43 H2O molecules.A correlation was found between these results and the observation of very intense and well-resolved FTIR bands arising from dioctahedral domains (mainly Al2OH, Fe2OH, and AlFeOH) along with very small responses from a trioctahedral domain (Mg3OH). Accordingly, a schematic representation of the composition of the octahedral sheet was proposed. The cation exchange capacity, specific surface area, and total pore volume were also assessed to be ca. 21.2 meq/100 g, 116 m2/g, and 0.458 cm3/g, respectively

    Clays as containers of metallic corrosion inhibitors originated from natural resources in paint metals protection

    No full text
    Ce travail a été consacré au développement de nouveaux microréservoirs d'inhibiteurs de corrosion à base de ressources naturelles minérales (les argiles marocaines de types beidellite et palygorskite), et organiques (le chitosane et l'acide heptanoïque) pour être utilisés en tant que charges anticorrosion dans les peintures. Dans les réservoirs de type beidellite, le stockage des inhibiteurs de corrosion a été réalisé soit en saturant les espaces interfoliaires par des cations inhibiteurs de corrosion tels que Ca2+ ou Ce3+, soit en modifiant les charges des feuillets argileux par intercalation du biopolymère chitosane afin d'adsorber des composés anioniques comme les ions heptanoate (C7-). Dans les réservoirs de type palygorskite, le stockage est basé sur le greffage d'un alkoxysilane sur les sites silanols de surface permettant d'adsorber les composés inhibiteurs via des sites NH3+. Après avoir caractérisé les matériaux avant et après fonctionnalisation par différentes techniques analytiques, les performances d'inhibition de corrosion du zinc et d'un acier doux en milieu NaCl ont été évaluées et comparées à celles du composé commercial dihydrogénotriphosphate d'aluminium (TPA) en utilisant des techniques électrochimiques stationnaires et dynamiques. Globalement, le revêtement organique à base de la beidellite modifiée au C7- montre une meilleure protection de l'acier électrozingué que le revêtement au TPA. De même, le revêtement organique comportant la palygorskite greffée au C-7 présente une performance d'inhibition de la corrosion de l'acier doux très intéressante par rapport au revêtement au TPA, sur environ 400 h d'immersionThis work was devoted to the development of new micrometric tanks of corrosion inhibitors based on mineral natural resources (Moroccan beidellite and palygorskite clays), and organic (chitosan and heptanoic acid) to be used as corrosion inhibitor tanks in the paintings. In the reservoirs of beidellite type, the storage of corrosion inhibitors made either by saturating the interlamellar areas by corrosion inhibitors cations such as Ca2+, or Ce3+, or by modifying the electrostatic charge of clays by intercalation of chitosan biopolymer in order to adsorb anionic compounds as heptanoate ions (C7-. In palygorskite type tanks, storage is based on the grafting of an alkoxysilane on the surface silanol sites to adsorb compounds via NH3+ sites. After characterizing materials before and after functionalization by several analytical techniques, the performance of corrosion inhibitors on zinc and mild steel in NaCl medium was evaluated and compared to those of commercial compound aluminium dihydrogen triphosphate (TPA) using stationary and dynamic electrochemical techniques. Overall, the organic coating containing modified C7- beidellite shows better protection of zinc than TPA compound. Similarly, C7- grafted palygorskite coating presents a very interesting performance of corrosion inhibition of mild steel corrosion compared to the coating with TPA, during approximately 400 h of immersio

    Argiles en tant que réservoirs d'inhibiteurs de corrosion métallique issus de ressources naturelles dans des peintures pour la protection des métaux

    No full text
    This work was devoted to the development of new micrometric tanks of corrosion inhibitors based on mineral natural resources (Moroccan beidellite and palygorskite clays), and organic (chitosan and heptanoic acid) to be used as corrosion inhibitor tanks in the paintings. In the reservoirs of beidellite type, the storage of corrosion inhibitors made either by saturating the interlamellar areas by corrosion inhibitors cations such as Ca2+, or Ce3+, or by modifying the electrostatic charge of clays by intercalation of chitosan biopolymer in order to adsorb anionic compounds as heptanoate ions (C7-. In palygorskite type tanks, storage is based on the grafting of an alkoxysilane on the surface silanol sites to adsorb compounds via NH3+ sites. After characterizing materials before and after functionalization by several analytical techniques, the performance of corrosion inhibitors on zinc and mild steel in NaCl medium was evaluated and compared to those of commercial compound aluminium dihydrogen triphosphate (TPA) using stationary and dynamic electrochemical techniques. Overall, the organic coating containing modified C7- beidellite shows better protection of zinc than TPA compound. Similarly, C7- grafted palygorskite coating presents a very interesting performance of corrosion inhibition of mild steel corrosion compared to the coating with TPA, during approximately 400 h of immersionCe travail a été consacré au développement de nouveaux microréservoirs d'inhibiteurs de corrosion à base de ressources naturelles minérales (les argiles marocaines de types beidellite et palygorskite), et organiques (le chitosane et l'acide heptanoïque) pour être utilisés en tant que charges anticorrosion dans les peintures. Dans les réservoirs de type beidellite, le stockage des inhibiteurs de corrosion a été réalisé soit en saturant les espaces interfoliaires par des cations inhibiteurs de corrosion tels que Ca2+ ou Ce3+, soit en modifiant les charges des feuillets argileux par intercalation du biopolymère chitosane afin d'adsorber des composés anioniques comme les ions heptanoate (C7-). Dans les réservoirs de type palygorskite, le stockage est basé sur le greffage d'un alkoxysilane sur les sites silanols de surface permettant d'adsorber les composés inhibiteurs via des sites NH3+. Après avoir caractérisé les matériaux avant et après fonctionnalisation par différentes techniques analytiques, les performances d'inhibition de corrosion du zinc et d'un acier doux en milieu NaCl ont été évaluées et comparées à celles du composé commercial dihydrogénotriphosphate d'aluminium (TPA) en utilisant des techniques électrochimiques stationnaires et dynamiques. Globalement, le revêtement organique à base de la beidellite modifiée au C7- montre une meilleure protection de l'acier électrozingué que le revêtement au TPA. De même, le revêtement organique comportant la palygorskite greffée au C-7 présente une performance d'inhibition de la corrosion de l'acier doux très intéressante par rapport au revêtement au TPA, sur environ 400 h d'immersio

    Contribution of gravity data and Sentinel-1 image for structural mapping. Case of Beni Mellal Atlas and Beni Moussa plain (Morocco).

    No full text
    The present work is a combined study of gravity and Sentine-1 data for fracture mapping in the karstic massif of Beni Mellal Atlas and the adjacent plain of Beni Moussa. In order to locate the various faults that contribute to the study area structuring, the gravimetric contacts analysis method, based on the joint use of the horizontal gradient and the upward continuation at different altitudes, has been applied to the gravity data. To optimize the structural mapping in the study area, the gravimetric lineaments obtained were completed and correlated with the lineaments got from Sentinel-1 image. Four faults families of NE-SW; E-O; N-S and NWSE directions have been highlighted. There fault families are perfectly combined with the studied area’s surface water network, moreover, they corroborate with the previous geological and structural studies

    Corrosion inhibition of zinc by calcium exchanged beidellite clay mineral: A new smart corrosion inhibitor

    No full text
    International audienceThe corrosion inhibition performances of zinc immersed in 0.1 M NaCI solution with and without CaCI2, Na+ and Ca2+ exchanged beidellite (BDT) clay mineral picked up from Agadir bassin (Morocco) was studiedby potentiodynamic measurements and electrochemical impedance spectroscopy. The chemical and microanalysis of Ne+-BDT and Ca2+-BDT by different techniques reveal basal distances of clays, of about 1.22 and 1.48 nm respectively, consistent with the saturation of beidellite interlayer spaces with Na+ and Ca2+ ions surrounded by one and two equivalent layers of water respectively. EIS results and surface analysis show that Ca2+-BDT acts as a smart inhibitor on zinc surface by modifying the physicochemical parameters of electrolyte near the surface. The exchange reaction in BDT involves the concentration decrease or the ``suppression'' of Na+, CO32- and Cl- ions near the zinc surface

    Contribution of gravity data and Sentinel-1 image for structural mapping. Case of Beni Mellal Atlas and Beni Moussa plain (Morocco).

    No full text
    The present work is a combined study of gravity and Sentine-1 data for fracture mapping in the karstic massif of Beni Mellal Atlas and the adjacent plain of Beni Moussa. In order to locate the various faults that contribute to the study area structuring, the gravimetric contacts analysis method, based on the joint use of the horizontal gradient and the upward continuation at different altitudes, has been applied to the gravity data. To optimize the structural mapping in the study area, the gravimetric lineaments obtained were completed and correlated with the lineaments got from Sentinel-1 image. Four faults families of NE-SW; E-O; N-S and NWSE directions have been highlighted. There fault families are perfectly combined with the studied area’s surface water network, moreover, they corroborate with the previous geological and structural studies

    Effect of 6-Aminohexanoic Acid Released from Its Aluminum Tri-Polyphosphate Intercalate (ATP-6-AHA) on the Corrosion Protection Mechanism of Steel in 3.5% Sodium Chloride Solution

    No full text
    A new corrosion inhibitor called ATP-6-AHA was elaborated, and its inhibition action on S235 low carbon steel in 3.5% sodium chloride (NaCl) was investigated using gravimetry, potentiodynamic polarization (PP), and electrochemical impedance spectroscopy (EIS). The release of ecofriendly 6-aminohexanoic acid (6-AHA) from its established aluminum tri-polyphosphate intercalate (ATP-6-AHA) is investigated using electrochemical and surface characterization techniques such as X-ray diffraction (XRD) and X-ray fluorescence (XRF). The results revealed that ATP-6-AHA is a good inhibitor, with an inhibition efficiency of approximately 70%. The efficiency is related to the passivation of a steel surface by a phosphate protective layer due to the synergistic effect of 6-AHA, as confirmed by a steel surface analysis conducted using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). This study suggests that the intercalation of 6-AHA as a sustainable organic molecule within the interlayer spaces of aluminum tri-polyphosphate can well serve as a good flaky inhibitor for protecting S235 low-carbon steel from corrosion in 3.5% NaCl

    Heptanoic acid adsorption on grafted palygorskite and its application as controlled-release corrosion inhibitor of steel

    No full text
    International audienceThis study deals with the anchoring of heptanoic acid (HC7) as a corrosion inhibitor to palygorskite clay mineral originated from High Atlas of Marrakech (Morocco) beforehand grafted with 3-aminopropyltriethoxysilane (APTES) entities. Physicochemical characterizations (XRD, FTIR, TG-MS, zeta potential measurements) confirmed the success of the APTES-grafting to silanol sites of palygorskite fibers edges and the heptanoate anions bonding to terminal NH3+ sites of grafted-APTES. Then, full-factorial design allowed optimizing the conditions of heptanoate adsorption. Preliminary electrochemical measurements revealed that functionalized grafted palygorskite (C-7-APTES Pal) can progressively release the heptanoate corrosion inhibitor in 0.1 M NaCl solution to inhibit the steel corrosion processes. (C) 2014 Elsevier B.V. All rights reserved
    corecore