374 research outputs found

    Direct numerical simulation of an oblique jet in a particle-laden crossflow

    Get PDF
    Jet in crossflow is a classic fluid dynamics problem widely studied in the last decades because of the big quantity of natural and industrial processes in which it is encountered (Mahesh in Annu Rev Fluid Mech 45(1):379–407, 2013 [6]). The present study focuses on the interaction between solid suspended particles and gas turbines film cooling that is a commonly used coolant technique aiming at generating a protective film of cold fluid around the blade profile. Effective cooling systems are crucial to increase turbine inlet gas temperature and to protect turbine blade surfaces from the huge thermal stress generated

    Water washing of axial flow compressors: Numerical study on the fate of injected droplets

    Get PDF
    In turbomachinery applications blade fouling represents a main cause of performance degradation. Among the different techniques currently available, online water washing is one of the most effective in removing deposit from the blades. Since this kind of washing is applied when the machine is close to design conditions, injected droplets are strongly accelerated when they reach the rotor blades and the understanding of their interaction with the blades is not straightforward. Moreover, undesirable phenomena like blades erosion or liquid film formation can occur. The present study aims at assessing droplets dragging from the injection system placed at the compressor inlet till the first stage rotor blades, with a focus on droplets impact locations, on the washing process and the associated risk of erosion. 3D numerical simulations of the whole compressor geometry (up to the first rotor stage) are performed by using Ansys Fluent to account for the asymmetric distribution of the sprays around of the machine struts, IGV and rotor blades. The simulations are carried out by adopting the k-ϵ realizable turbulence model with standard wall functions, coupled with the discretephase model to track injected droplets motion. Droplets-wall interaction is also accounted for by adopting the Stanton-Rutland model which define a droplet impact outcome depending on the impact conditions. The induced erosion is evaluated by adopting an erosion model previously developed by some of the authors and implemented in Fluent through the use of a User Defined Function (UDF). Two sets of simulations are performed, by considering the rotor still and rotating, representative of off-line and on-line water washing conditions, respectively. In the rotating simulation, the Multiple Reference Frame Model is used. The obtained results demonstrate that the washing process differs substantially between the fixed and the rotating case. Moreover, to quantify the water washing effectiveness and the erosion risk, new indices were introduced and computed for the main components of the machine. These indices can be considered as useful prescriptions in the optimization process of water washing systems

    Rapid and non-destructive method to assess in the vineyardgrape berry anthocyanins under different seasonal andwater conditions

    Get PDF
    Abstract Background and Aims: Monitoring of anthocyanins (Anth) in winegrape (Vitis vinifera L.) is fundamental for the production of top-quality red wines. This work was aimed at testing a new fluorescence-based sensor for Anth detection in the vineyard. Significance of the Study: The present study showed a new important innovative technology for viticulture. The sensor evaluation of the large spatial and temporal heterogeneity in Anth accumulation can be useful as support parameter in the harvest date decision or for vineyard zoning of phenolic maturity. Methods and Results: Anth in grape (cv. Aleatico) bunches attached to the vine were monitored non-destructively in the field using a fluorescence-based sensor during the 2008 and 2009 seasons and under different water regimes. The ANTHRG index = log(far-red-fluorescenceR/far-red-fluorescenceG), with fluorescence signals excited with red (R) and green (G) light, was inversely correlated through an exponential function (r2 = 0.875) to the Anth concentration derived from the HPLC analysis of berry skin extracts. ANTHRG was effective in detecting the earlier ripening process in 2009 with respect to 2008 and differences in the Anth accumulation between seasons and in relation to different water regimes.Water deficit imposed in 2009 enhanced Anth concentration in berries because of a reduction in berry size but also an increase of Anth biosynthesis. This effect was observed by both destructive and ANTHRG non-destructive measurements. Conclusions: Our results show that the employed fluorescence sensor represents a reliable, rapid and non-invasive tool for monitoring and determining Anth accumulation in situ

    Role of endogenous opioids on nociceptive threshold in patients with exercise-induced myocardial ischemia.

    Get PDF
    To evaluate whether endogenous opioids (EO) play a role in the perception of anginal pain, a randomized double blind clinical trial, using naloxone (N) and placebo (P) and measuring beta-endorphin (beta-ep) plasma levels, was performed. We studied 10 patients with angiographically assessed coronary artery disease (CAD) and stable exercise-induced myocardial ischemia (established by 2 preliminary bicycle ergometric tests) of whom 5 symptomatic (SYM) and 5 asymptomatic (ASYM) and 5 subjects without CAD as a control group (CON). On a third exercise test the beta-ep plasma level (fmol/ml) was measured at rest (SYM 5.4 +/- 2.3 vs ASYM 7.2 +/- 2.3 vs CON 6.8 +/- 2.6, NS), at peak exercise (SYM 4.4 +/- 1.8 vs ASYM 8.0 +/- 4.2 and vs CON 6.2 +/- 2.7, NS) and during recovery (SYM 7.5 +/- 4.2 vs ASYM 7.2 +/- 3.0 vs CON 6.7 +/- 2.5, NS). On 2 subsequent tests patients received N (0.2 mg/kg) or P intravenously and chest pain was evaluated on an analogue scale (score from 1 to 10). After N compared to P we observed: an increased perception of chest pain in SYM (6.8 +/- 1.5 vs 4.2 +/- 1.0; p less than 0.01) without significant changes of the ischemic threshold (total work, heart rate-blood pressure product, ST segment changes, 2D-echocardiographic wall motion abnormalities); no modifications in ASYM and CON.(ABSTRACT TRUNCATED AT 250 WORDS

    Application of Vis/Nir spectroscopy to establish peach ripening as affected by rootstock

    Get PDF
    The objective of this paper was to monitor peach ripeness of “Chimarrita” and “Maciel” cultivars, grafted on different rootstocks, using the pulp firmness parameter, as an indicator of harvest time through equipment based on Vis/Nir spectroscopy. The orchard was installed in 2005, has a "V" conduction system with spacing of 5.0 x 1.5 m, and the cultivars are grafted on seven rootstocks: “Capdeboscq”, “Flordaguard”, “Nemaguard”, “Okinawa”, “Tsukuba”, “Umezeiro” and “Viamão”. After harvesting, the fruits were evaluated by the NIR CASE spectrophotometer, establishing categories of pulp firmness, between 40N and 60N for fruits consumed in a long term and <40N for immediate consumption. The analyzed rootstocks alter the peach ripeness of the “Chimarrita” and “Maciel” cultivars. The “Umezeiro” rootstock anticipates harvest for the “Chimarrita” cultivar. The “Nemaguard”/ “Maciel” combination provides fruits with a superior harvest period than the other ones evaluated. The Vis/Nir Spectroscopy is a useful tool to monitor the harvest of “Chimarrita” and “Maciel” cultivars

    Misalignment of hemodynamic forces in the left ventricle is associated with adverse remodeling following STEMI

    Get PDF
    Abstract Funding Acknowledgements Type of funding sources: None. Background Infarct size (IS), area at risk (AAR) and microvascular obstruction (MVO) are well known predictors of adverse remodeling (aLVr) following acute myocardial infarction, while the pathogenic role of left ventricular (LV) hemodynamic forces (HDFs) is still unknown. Recent evidence suggests the role of HDFs in negative remodeling after pathogenic events. Purpose To identify LV HDFs patterns associated with aLVr in reperfused ST-segment elevation MI (STEMI) patients. Methods Forty-nine acute STEMI patients underwent CMR at 1 week (baseline) and 4 months (follow-up) after MI. The following parameters were measured: left ventricular end-diastolic and end-systolic volume index for body surface area (LVEDVi and LVESVi), left ventricular ejection fraction (LVEF) and LV mass index, AAR and IS. LV HDFs were computed at baseline from cine CMR long axis datasets using a novel method based on LV endocardial boundary tracking. LV HDFs were calculated both in apex-base (A-B) and latero-septal (L-S) directions. The distribution of LV HDFs were evaluated by L-S over A-B HDFs ratio (L-S/A-B HDFs ratio %). All HDFs parameters are computed over the entire heartbeat, in systole and diastole. aLVr was defined as an absolute increase in LVESV of at least 15% (ΔLV-ESV ≥15%). Results Patients with aLVr (n = 18; 37%) had significant greater value of AAR (32 ± 23 vs 22 ± 18; p = 0.03) and slightly larger IS (23 ± 16 vs 15 ± 11; p= 0.07) at baseline. In patients with aLVr at FU, baseline systolic L-S HDF were lower (2.7 ± 0.9 vs 3.6 ± 1; p = 0.027) while diastolic L-S/A-B HDF ratio was significantly higher (28 ± 14 vs 19 ± 6; p = 0.03), reflecting higher grade of diastolic HDFs misalignment. At univariate logistic regression analysis, higher IS [Odd ratio (OR) 1.05; 95% confidence interval (95% CI) 1.01-1.1; p= 0.04] L-S HDFs (OR 0.41; 95% CI 0.2-0.9; p= 0.04] and higher diastolic L-S/A-B HDFs ratio (OR 1.1; 95% CI 1.01-1.2; p= 0.05) were associated with aLVr at FU (Table). At multivariate logistic regression analysis, L-S/A-B HDF ratio remained the only independent predictor of adverse LV remodeling after correction for other baseline determinants. Conclusion Misalignment of diastolic HDFs following STEMI is associated with aLVr observed after 4 months. Predictors of adverse remodeling Univariate Multivariate Parameter OR (95% CI) P OR (95% CI) P IS (%) 1.05 (1.01-1.1) 0.042 - - Systolic L-S HDF 0.41 (0.2-0.9) 0.04 - - Diastolic L-S/A-B HDF Ratio 1.1 (1.01-1.2) 0.05 1.1 (1.01-1.2) 0.04 A-B:apex-base; L-S: latero-septal; HDFs: hemodynamic forces Abstract Figure. Diastolic HDFs distribution and aLV

    Self-Assembling Peptide Detergents Stabilize Isolated Photosystem Ion a Dry Surface for an Extended Time

    Get PDF
    We used a class of designed peptide detergents to stabilize photosystem I (PS-I) upon extended drying under N(2) on a gold-coated-Ni-NTA glass surface. PS-I is a chlorophyll-containing membrane protein complex that is the primary reducer of ferredoxin and the electron acceptor of plastocyanin. We isolated the complex from the thylakoids of spinach chloroplasts using a chemical detergent. The chlorophyll molecules associated with the PS-I complex provide an intrinsic steady-state emission spectrum between 650 and 800 nm at −196.15 °C that reflects the organization of the pigment-protein interactions. In the absence of detergents, a large blue shift of the fluorescence maxima from approximately 735 nm to approximately 685 nm indicates a disruption in light-harvesting subunit organization, thus revealing chlorophyll−protein interactions. The commonly used membrane protein-stabilizing detergents, N-dodecyl-β-D-maltoside and N-octyl-β-D-glucoside, only partially stabilized the approximately 735-nm complex with approximately 685-nm spectroscopic shift. However, prior to drying, addition of the peptide detergent acetyl- AAAAAAK at increasing concentration significantly stabilized the PS-I complex. Moreover, in the presence of acetyl- AAAAAAK, the PS-I complex is stable in a dried form at room temperature for at least 3 wk. Another peptide detergent, acetyl-VVVVVVD, also stabilized the complex but to a lesser extent. These observations suggest that the peptide detergents may effectively stabilize membrane proteins in the solid-state. These designed peptide detergents may facilitate the study of diverse types of membrane proteins
    corecore