41 research outputs found

    Effect of ice crystal size and graupel velocity on thundercloud electrification

    No full text
    313-319A one-dimensional time dependent model for cloud electrification, which includes collision between ice crystal and graupel in the presence of cloud liquid water, has been developed in order to test the importance of various charge transfer parameters. The laboratory measurements .showed that the charge transfer depends on ice crystal size and impact velocity. The generated electric fields have been calculated for various values of size dependency (a), velocity dependency (b), precipitation intensity (p0), concentration of ice crystals (n) and event probability (p).lt is found that the estimated electric field (4 x 105 Vm-1), within a time interval of about 1500 s, can be achieved for p0≥ 30 mmh-1. The maximum electric field (Emax) is not sensitive to the values of a and b, but its rate of growth is faster if a and b are larger. The obtained results have been discussed in the light of various experimental observations and it has been found that charging rates may be affected by the specified size and velocity dependencies

    Global electric circuit parameters over Indian subcontinent

    No full text
    320-324Some global electric circuit (GEC) parameters like electrical conductivity, air-earth current, electric field and electrostatic potential etc. have been calculated over Indian subcontinent taking into account the small scale (0.6° grid in latitude and longitude) orographic and latitudinal effects and the base conditions of conductivity profiles. It has been found that the electrical conductivity and air-earth current are larger over mountains than over ocean, while the electric field and the electrostatic potential are smaller over mountains. The theoretically calculated average value of electric field over sea surface is found to be in good agreement with the experimental observations. The values of all the parameters are found to increase with latitude, but the latitudinal variation is observed to be smaller than the orographic variation

    Comparison of Cobra perilaryngeal airway (CobraPLA TM ) with flexible laryngeal mask airway in terms of device stability and ventilation characteristics in pediatric ophthalmic surgery

    No full text
    Background: Supraglottic airway devices play an important role in ophthalmic surgery. The flexible laryngeal mask airway (LMA TM ) is generally the preferred airway device. However, there are no studies comparing it with the Cobra perilaryngeal airway (CobraPLA TM ) in pediatric ophthalmic procedures. Aims: To analyze the intraoperative device stability and ability to maintain normocarbia of CobraPLA TM and compare it to that with flexible LMA TM . Materials and Methods: Ninety children of American Society for Anesthesiologists physical status 1 and 2, aged 3-15 years scheduled for elective ophthalmic surgeries were randomly assigned to either the CobraPLA TM or the flexible LMA TM group. After placement of each airway device, oropharyngeal leak pressure (OLP) was noted. Adequate seal of the devices was confirmed at an inspired pressure of 15 cm H 2 O and pressure-controlled ventilation was initiated. Device displacement was diagnosed if there was a change in capnograph waveform, audible or palpable gas leak, change in expired tidal volume to 6 kPa, or need to increase inspired pressure to >18 cm H 2 O to maintain normocarbia. Results: Demographic data, duration, and type of surgery in both the groups were similar. A higher incidence of intraoperative device displacement was noted with the CobraPLA TM in comparison to flexible LMA TM (P < 0.001). Incidence of displacement was higher in strabismus surgery (7/12). Insertion characteristics and ventilation parameters were comparable. The OLP was significantly higher in CobraPLA TM group (28 ± 6.8 cm H 2 O) compared to the flexible LMA TM group (19.9 ± 4.5 cm H 2 O) (P < 0.001). Higher surgeon dissatisfaction (65.9%) was seen in the CobraPLA TM group. Conclusion: The high incidence of device displacement and surgeon dissatisfaction make CobraPLA TM a less favorable option than flexible LMA TM in ophthalmic surgery

    Measurement of the production cross section of prompt Ξ0c baryons in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The transverse momentum (pT) differential production cross section of the promptly-produced charm-strange baryon Ξ0c (and its charge conjugate Ξ0c¯¯¯¯¯¯) is measured at midrapidity via its hadronic decay into π+Ξ− in p−Pb collisions at a centre-of-mass energy per nucleon−nucleon collision sNN−−−√ = 5.02 TeV with the ALICE detector at the LHC. The Ξ0c nuclear modification factor (RpPb), calculated from the cross sections in pp and p−Pb collisions, is presented and compared with the RpPb of Λ+c baryons. The ratios between the pT-differential production cross section of Ξ0c baryons and those of D0 mesons and Λ+c baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt Ξ0c baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p−Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model in which hadronisation is implemented via quark coalescence. The pT-integrated cross section of prompt Ξ0c-baryon production at midrapidity extrapolated down to pT = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p−Pb collisions at midrapidity

    Measurement of Ω0c baryon production and branching-fraction ratio BR(Ω0c → Ω−e+νe)/BR(Ω0c → Ω−π+) in pp collisions at √s = 13 TeV

    No full text
    The inclusive production of the charm-strange baryon Ω0c is measured for the first time via its semileptonic decay into Ω−e+νe at midrapidity (|y| < 0.8) in proton–proton (pp) collisions at the centre-of-mass energy √s = 13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 < pT < 12 GeV/c. The branching-fraction ratio BR(Ω0c → Ω−e+νe)/BR(Ω0c → Ω−π+) is measured to be 1.12 ± 0.22 (stat.) ± 0.27 (syst.). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented

    Exclusive four pion photoproduction in ultraperipheral Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    International audienceThe intense photon fluxes from relativistic nuclei provide an opportunity to study photonuclear interactions in ultraperipheral collisions. The measurement of coherently photoproduced π+ππ+π\pi^+\pi^-\pi^+\pi^- final states in ultraperipheral Pb-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV is presented for the first time. The cross section, dσ\sigma/dyy, times the branching ratio (ρπ+π+ππ\rho\rightarrow \pi^+ \pi^+ \pi^- \pi^-) is found to be 47.8±2.3 (stat.)±7.7 (syst.)47.8\pm2.3~\rm{(stat.)}\pm7.7~\rm{(syst.)} mb in the rapidity interval y<0.5|y| < 0.5. The invariant mass distribution is not well described with a single Breit-Wigner resonance. The production of two interfering resonances, ρ(1450)\rho(1450) and ρ(1700)\rho(1700), provides a good description of the data. The values of the masses (mm) and widths (Γ\Gamma) of the resonances extracted from the fit are m1=1385±14 (stat.)±3 (syst.)m_{1}=1385\pm14~\rm{(stat.)}\pm3~\rm{(syst.)} MeV/c2c^2, Γ1=431±36 (stat.)±82 (syst.)\Gamma_{1}=431\pm36~\rm{(stat.)}\pm82~\rm{(syst.)} MeV/c2c^2, m2=1663±13 (stat.)±22 (syst.)m_{2}=1663\pm13~\rm{(stat.)}\pm22~\rm{(syst.)} MeV/c2c^2 and Γ2=357±31 (stat.)±49 (syst.)\Gamma_{2}=357 \pm31~\rm{(stat.)}\pm49~\rm{(syst.)} MeV/c2c^2, respectively. The measured cross sections times the branching ratios are compared to recent theoretical predictions

    Measurement of Ωc0\Omega^0_{\rm c} baryon production and branching-fraction ratio BR(Ωc0Ωe+νe)/BR(Ωc0Ωπ+){\rm BR(\Omega^0_c \rightarrow \Omega^- e^+\nu_e)} / {\rm BR(\Omega^0_c \rightarrow \Omega^- \pi^+)} in pp collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe inclusive production of the charm-strange baryon Ωc0\Omega^{0}_{\rm c} is measured for the first time via its semileptonic decay into Ωe+νe\Omega^{-}\rm e^{+}\nu_{e} at midrapidity (y<0.8|y|<0.8) in proton-proton (pp) collisions at the centre-of-mass energy s=13\sqrt{s}=13 TeV with the ALICE detector at the LHC. The transverse momentum (pTp_{\rm T}) differential cross section multiplied by the branching ratio is presented in the interval 2<pT<12 GeV/c2<p_{\rm T}<12~{\rm GeV}/c. The branching-fraction ratio BR(Ωc0Ωe+νe)/BR(Ωc0Ωπ+){\rm BR}(\Omega^0_{\rm c} \rightarrow \Omega^{-}{\rm e}^{+}\nu_{\rm e})/ {\rm BR}(\Omega^0_{\rm c} \rightarrow \Omega^{-}{\pi}^{+}) is measured to be 1.12 ±\pm 0.22 (stat.) ±\pm 0.27 (syst.). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented

    Systematic study of flow vector decorrelation in sNN=5.02\mathbf{\sqrt{\textit{s}_{_{\bf NN}}}=5.02} TeV Pb-Pb collisions

    No full text
    International audienceMeasurements of the pTp_{\rm T}-dependent flow vector fluctuations in Pb-Pb collisions at sNN=5.02 TeV\sqrt{s_{_{\rm NN}}} = 5.02~\mathrm{TeV} using azimuthal correlations with the ALICE experiment at the LHC are presented. A four-particle correlation approach [1] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the pTp_{\rm T}-dependent flow vector fluctuations at sNN=5.02 TeV\sqrt{s_{_{\rm NN}}} = 5.02~\mathrm{TeV} with two-particle correlations. Significant pTp_{\rm T}-dependent fluctuations of the V2\vec{V}_{2} flow vector in Pb-Pb collisions are found across different centrality ranges, with the largest fluctuations of up to \sim15% being present in the 5% most central collisions. In parallel, no evidence of significant pTp_{\rm T}-dependent fluctuations of V3\vec{V}_{3} or V4\vec{V}_{4} is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than 5σ5\sigma significance in central collisions. These observations in Pb-Pb collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high pTp_{\rm T}, which might be biased by pTp_{\rm T}-dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be re-examined to improve our understanding of initial conditions, quark--gluon plasma (QGP) properties, and the dynamic evolution of the created system

    Measurement of the impact-parameter dependent azimuthal anisotropy in coherent ρ0 photoproduction in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The first measurement of the impact-parameter dependent angular anisotropy in the decay of coherently photoproduced ρ0 mesons is presented. The ρ0 mesons are reconstructed through their decay into a pion pair. The measured anisotropy corresponds to the amplitude of the cos(2ϕ) modulation, where ϕ is the angle between the two vectors formed by the sum and the difference of the transverse momenta of the pions, respectively. The measurement was performed by the ALICE Collaboration at the LHC using data from ultraperipheral Pb−Pb collisions at a center-of-mass energy of sNN−−−√ = 5.02 TeV per nucleon pair. Different impact-parameter regions are selected by classifying the events in nuclear-breakup classes. The amplitude of the cos(2ϕ) modulation is found to increase by about one order of magnitude from large to small impact parameters. Theoretical calculations, which describe the measurement, explain the cos(2ϕ) anisotropy as the result of a quantum interference effect at the femtometer scale that arises from the ambiguity as to which of the nuclei is the source of the photon in the interaction
    corecore