6 research outputs found

    Ferro-rotational domain walls revealed by electric quadrupole second harmonic generation microscopy

    Full text link
    Domain walls are ubiquitous in materials that undergo phase transitions driven by spontaneous symmetry breaking. Domain walls in ferroics and multiferroics have received tremendous attention recently due to their emergent properties distinct from their domain counterparts, for example, their high mobility and controllability, as well as their potential applications in nanoelectronics. However, it is extremely challenging to detect, visualize and study the ferro-rotational (FR) domain walls because the FR order, in contrast to ferromagnetism (FM) and ferroelectricity (FE), is invariant under both the spatial-inversion and the time-reversal operations and thus hardly couple with conventional experimental probes. Here, an FR candidate NiTiO3\mathrm{NiTiO_{3}} is investigated by ultrasensitive electric quadrupole (EQ) second harmonic generation rotational anisotropy (SHG RA) to probe the point symmetries of the two degenerate FR domain states, showing their relation by the vertical mirror operations that are broken below the FR critical temperature. We then visualize the real-space FR domains by scanning EQ SHG microscopy, and further resolve the FR domain walls by revealing a suppressed SHG intensity at domain walls. By taking local EQ SHG RA measurements, we show the restoration of the mirror symmetry at FR domain walls and prove their unconventional nonpolar nature. Our findings not only provide a comprehensive insight into FR domain walls, but also demonstrate a unique and powerful tool for future studies on domain walls of unconventional ferroics, both of which pave the way towards future manipulations and applications of FR domain walls

    Endotaxial Stabilization of 2D Charge Density Waves with Long-range Order

    Full text link
    Charge density waves are emergent quantum states that spontaneously reduce crystal symmetry, drive metal-insulator transitions, and precede superconductivity. In low-dimensions, distinct quantum states arise, however, thermal fluctuations and external disorder destroy long-range order. Here we stabilize ordered two-dimensional (2D) charge density waves through endotaxial synthesis of confined monolayers of 1T-TaS2_2. Specifically, an ordered incommensurate charge density wave (oIC-CDW) is realized in 2D with dramatically enhanced amplitude and resistivity. By enhancing CDW order, the hexatic nature of charge density waves becomes observable. Upon heating via in-situ TEM, the CDW continuously melts in a reversible hexatic process wherein topological defects form in the charge density wave. From these results, new regimes of the CDW phase diagram for 1T-TaS2_2 are derived and consistent with the predicted emergence of vestigial quantum order

    Revealing intrinsic domains and fluctuations of moir\'e magnetism by a wide-field quantum microscope

    Full text link
    Moir\'e magnetism featured by stacking engineered atomic registry and lattice interactions has recently emerged as an appealing quantum state of matter at the forefront condensed matter physics research. Nanoscale imaging of moir\'e magnets is highly desirable and serves as a prerequisite to investigate a broad range of intriguing physics underlying the interplay between topology, electronic correlations, and unconventional nanomagnetism. Here we report spin defect-based wide-field imaging of magnetic domains and spin fluctuations in twisted double trilayer (tDT) chromium triiodide CrI3. We explicitly show that intrinsic moir\'e domains of opposite magnetizations appear over arrays of moir\'e supercells in low-twist-angle tDT CrI3. In contrast, spin fluctuations measured in tDT CrI3 manifest little spatial variations on the same mesoscopic length scale due to the dominant driving force of intralayer exchange interaction. Our results enrich the current understanding of exotic magnetic phases sustained by moir\'e magnetism and highlight the opportunities provided by quantum spin sensors in probing microscopic spin related phenomena on two-dimensional flatland

    Endotaxial stabilization of 2D charge density waves with long-range order

    No full text
    Abstract Charge density waves are emergent quantum states that spontaneously reduce crystal symmetry, drive metal-insulator transitions, and precede superconductivity. In low-dimensions, distinct quantum states arise, however, thermal fluctuations and external disorder destroy long-range order. Here we stabilize ordered two-dimensional (2D) charge density waves through endotaxial synthesis of confined monolayers of 1T-TaS2. Specifically, an ordered incommensurate charge density wave (oIC-CDW) is realized in 2D with dramatically enhanced amplitude and resistivity. By enhancing CDW order, the hexatic nature of charge density waves becomes observable. Upon heating via in-situ TEM, the CDW continuously melts in a reversible hexatic process wherein topological defects form in the charge density wave. From these results, new regimes of the CDW phase diagram for 1T-TaS2 are derived and consistent with the predicted emergence of vestigial quantum order
    corecore