30 research outputs found

    Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk

    Get PDF
    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of similar to 10(6) CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at similar to 80 degrees C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125 degrees C caused no reduction of spores. A reduction of 3.5 log(10)CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150 degrees C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation.China Scholarship Council (CSC)/20140635012

    Comparative flavonoid profile of orange (Citrus sinensis) flavedo and albedo extracted by conventional and emerging techniques using UPLC-IMS-MS, chemometrics and antioxidant effects

    Get PDF
    Introduction: Citrus fruits are one of the most frequently counterfeited processed products in the world. In the juice production alone, the peels, divided into flavedo and albedo, are the main waste product. The extracts of this by-product are enriched with many bioactive substances. Newer extraction techniques generally have milder extraction conditions with simultaneous improvement of the extraction process. Methods: This study presents a combinatorial approach utilizing data-independent acquisition-based ion mobility spectrometry coupled to tandem mass spectrometry. Integrating orthogonal collision cross section (CCS) data matching simultaneously improves the confidence in metabolite identification in flavedo and albedo tissues from Citrus sinensis. Furthermore, four different extraction approaches [conventional, ultrasonic, High Hydrostatic Pressure (HHP) and Pulsed Electric Field (PEF)] with various optimized processing conditions were compared in terms of antioxidant effects and flavonoid profile particularly polymethoxy flavones (PMFs). Results: A total number of 57 metabolites were identified, 15 of which were present in both flavedo and albedo, forming a good qualitative overlapping of distributed flavonoids. For flavedo samples, the antioxidant activity was higher for PEF and HHP treated samples compared to other extraction methods. However, ethyl acetate extract exhibited the highest antioxidant effects in albedo samples attributed to different qualitative composition content rather than various quantities of same metabolites. The optimum processing conditions for albedo extraction using HHP and PEF were 200 MPa and 15 kJ/kg at 10 kV, respectively. While, HHP at medium pressure (400 MPa) and PEF at 15 kJ/kg/3 kV were the optimum conditions for flavedo extraction. Conclusion: Chemometric analysis of the dataset indicated that orange flavedo can be a valid source of soluble phenolic compounds especially PMFs. In order to achieve cross-application of production, future study should concentrate on how citrus PMFs correlate with biological engineering techniques such as breeding, genetic engineering, and fermentation engineering

    Impact comparison of thermal, pulsed electric fields and high pressure preservation of watermelon and tomato juice

    No full text
    Increased consumer awareness of potential health benefits of consumption of fruits and vegetables resulted in growing demand for fresh or minimally processed juices. In this context, food sector stakeholders are constantly looking into possible alternatives for thermal processing, aiming to better maintain food quality attributes while at the same time delivering the required level of safety. Among many alternative technologies, two technologies were recognised as the most promising ones: high pressure processing (HPP) and pulsed electric fields (PEF) processing. This doctoral thesis aims at a fair basis comparison of thermal, PEF and HPP preservation of juices, where processing conditions were experimentally selected aiming at an equivalent level of microbial inactivation. Two relevant juices different in acidity were selected: (1) watermelon juice as a low-acidic matrix, and (2) tomato juice as an acidic matrix. The first part of the doctoral research addresses a quality comparison of the processing impact of thermal, HPP and PEF processing on the two selected fruit matrices, immediately after the treatment as well as during shelf-life using an untargeted fingerprinting approach. The second part addresses the energy requirements and environmental impact using life cycle assessment (LCA) of the three selected processing technologies.status: publishe

    Effect of pulsed electric field treatment on water distribution of freeze-dried apple tissue evaluated with DSC and TD-NMR techniques

    Get PDF
    open8siThis work aimed to study pulsed electric fields (PEF) effect on the water distribution of freeze-dried apple. Apple (var. Cripps Pink) was treated in 15% trehalose and 1% ascorbic acid solution (388 μS/cm) at 3 Hz and various electric field strengths 0.3; 0.6; 0.9 and 1.2 kV cm− 1 for 5, 10 or 15 pulses. The samples were frozen at − 45 °C and freeze-dried. The analyses were performed after rehydration. Differential Scanning Calorimetry (DSC) and Nuclear Magnetic Resonance in the domain of time (TD-NMR) were performed to assess thermal properties of freezable water and water distribution in apple tissue, respectively. PEF changed the integrity and continuity of the cell structure shown by the water redistribution between different compartments. The water in vacuoles and extracellular spaces had higher TD-NMR relaxation times as water molecules can diffuse in larger volumes before relaxing, even if the overall solutes concentration in the tissue increases.embargoed_20170616Tylewicz, Urszula; Aganovic, Kemal; Vannini, Marianna; Toepfl, Stefan; Bortolotti, Villiam; Dalla Rosa, Marco; Oey, Indrawati; Heinz, VolkerTylewicz, Urszula; Aganovic, Kemal; Vannini, Marianna; Toepfl, Stefan; Bortolotti, Villiam; Dalla Rosa, Marco; Oey, Indrawati; Heinz, Volke

    Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk

    No full text
    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~106 CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at ~80°C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125°C caused no reduction of spores. A reduction of 3.5 log10CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150°C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation

    Microbial inactivation and quality impact assessment of red pepper paste treated by high pressure processing

    No full text
    The study aimed to investigate inactivation of naturally occurring microorganisms and quality of red pepper paste treated by high pressure processing (HPP). Central composite rotatable design was employed to determine the impacts of pressure (100–600 MPa) and holding time (30–600 s). HPP at 527 MPa for 517 s reduced aerobic mesophilic bacteria count by 4.5 log CFU/g. Yeasts and molds counts were reduced to 1 log CFU/g at 600 MPa for 315 s. Total phenols, carotenoids and antioxidants activity ranged from 0.28 to 0.33 g GAE/100 g, 96.0–98.4 mg βc/100 g and 8.70–8.95 μmol TE/g, respectively. Increase (2.5–6.7%) in these variables was observed with increasing pressure and holding time. Total color difference (ΔE∗) values (0.2–2.8) were within the ranges of ‘imperceptible’ to ‘noticeable’. Experimental results were fitted satisfactorily into quadratic model with higher R2 values (0.8619–0.9863). Optimization process suggested treatment of red pepper paste at 536 MPa for 125 s for maximum desirability (0.622). Validation experiments confirmed comparable percentage of relative errors. Overall, this technique could be considered as an efficient treatment for the inactivation of microorganisms that naturally occur in red pepper paste with minimal changes in its characteristics

    Microbial decontamination assisted by ultrasound-based processing technologies in food and model systems: A review

    No full text
    <p>Ultrasound (US) technology is recognized as one of the emerging technologies that arise from the current trends for improving nutritional and organoleptic properties while providing food safety. However, when applying the US alone, higher power and longer treatment times than conventional thermal treatments are needed to achieve a comparable level of microbial inactivation. This results in risks, damaging food products' composition, structure, or sensory properties, and can lead to higher processing costs. Therefore, the US has often been investigated in combination with other approaches, like heating at mild temperatures and/or treatments at elevated pressure, use of antimicrobial substances, or other emerging technologies (e.g., high-pressure processing, pulsed electric fields, non-thermal plasma, or microwaves). A combination of US with different approaches has been reported to be less energy and time consuming. This manuscript aims to provide a broad review of the microbial inactivation efficacy of US technology in different food matrices and model systems. In particular, emphasis is given to the US in combination with the two most industrially viable physical processes, that is, heating at mild temperatures and/or treatments at elevated pressure, resulting in techniques known as thermosonication, manosonication, and manothermosonication. The available literature is reviewed, and critically discussed, and potential research gaps are identified. Additionally, discussions on the US's inactivation mechanisms and lethal effects are included. Finally, mathematical modeling approaches of microbial inactivation kinetics due to US-based processing technologies are also outlined. Overall, this review focuses only on the uses of the US and its combinations with other processes relevant to microbial food decontamination.</p&gt

    Physicochemical, functional, oxidative stability and rheological properties of red pepper (Capsicum annuum L.) powder and paste

    No full text
    Red pepper (Capsicum annuum L.) is one of the major spices consumed globally, recognized for its aroma and nutrient properties, and it has a major economic value for high producing countries. However, characterization of its techno-functional properties and in-depth understanding of oxidative stability is needed to produce food of high quality and stability. Thus, this work focused on the chemical, functional, thermal, oxidative stability and rheological properties of red pepper powder and paste. Experiment was designed in a Completely Randomized Design (CRD) fashion. The red pepper powder contained 14.50 g/100 g, 44.00 g/100 g and 7.57 g/100 g of crude fat, crude fiber and ash, respectively. The concentration of total phenols, carotenoids and antioxidants activity of the powder were 1.04 g GAE/100 g, 374 mg βc/100 g and 38.61 μmol TE/g, respectively. Functional properties showed lower bulk density (395.1 kg/m3) and higher tapped density (583.4 kg/m3) indicating the higher compressibility of the powder. In contrast, Hausner ratio (1.48), Carr’s index (32%) and angle of repose (45°) indicated poor flowability of the powder. Particle size distribution also indicated that the volume weighted mean values D[4,3] of the powder and paste were 262.20 and 201.46, respectively. Emulsifying capacity of the powder was 47.5%. Oil and water absorption capacities varied from 1.41 to 1.73 and 0.86 to 2.29 g/g of initial weight, respectively. Higher glass transition temperature was observed for the powder (62.54°C) than the paste (45.64°C). The induction period indicated that red pepper was more stable against oxidation in powder (5.2 h) than in the paste form (3.2 h). Rheological analysis revealed that the paste exhibited shear-thinning behavior. Overall, understanding of the properties of red pepper could contribute to enhance quality

    Pulsed light treatment reduces microorganisms and mycotoxins naturally present in red pepper (Capsicum annuum L.) powder

    No full text
    The impact of pulsed light (PL) treatment on naturally occurring microorganisms, mycotoxins, and on physicochemical properties in red pepper powder was investigated. Powder samples were exposed to different PL treatments up to 61 pulses, with fluence ranging from 1.0 to 9.1 J/cm2. The highest fluence applied (9.1 J/cm2, 61 pulses, 20 s) resulted in 2.7, 3.1, and 4.1 log CFU/g reduction of yeasts, molds, and total plate counts (TPC), where initial microbial loads were 4.6, 5.5, and 6.5 log CFU/g, respectively. At the same fluence intensity, a maximum reduction of 67.2, 50.9, and 36.9% of aflatoxin B1 (AFB1), total aflatoxins (AF), and ochratoxin A (OTA) were detected, respectively. Proportional increase in temperature of the samples was observed from the absorbed PL energy, reaching maximum of 59.8°C. The inactivation of investigated microorganisms and mycotoxins followed first-order kinetics (R2 > 0.95). The fluence intensity at 6.9 and 9.1 J/cm2 did not cause degradation, but rather a significant (p < .05) and apparent increase of total phenols. Total color difference (ΔE*) revealed only “slight differences,” compared to the untreated sample. In conclusion, higher reduction of microbial load and mycotoxins in red pepper powder could be achieved, when higher treatment intensity was applied. This suggests the PL as a potential technology for decontamination of red pepper powder and other spice powders
    corecore