206 research outputs found

    Three-dimensional vortex configurations in a rotating Bose Einstein condensate

    Full text link
    We consider a rotating Bose-Einstein condensate in a harmonic trap and investigate numerically the behavior of the wave function which solves the Gross Pitaevskii equation. Following recent experiments [Rosenbuch et al, Phys. Rev. Lett., 89, 200403 (2002)], we study in detail the line of a single quantized vortex, which has a U or S shape. We find that a single vortex can lie only in the x-z or y-z plane. S type vortices exist for all values of the angular velocity Omega while U vortices exist for Omega sufficiently large. We compute the energy of the various configurations with several vortices and study the three-dimensional structure of vortices

    Dissipative flow and vortex shedding in the Painlev\'e boundary layer of a Bose Einstein condensate

    Full text link
    Raman et al. have found experimental evidence for a critical velocity under which there is no dissipation when a detuned laser beam is moved in a Bose-Einstein condensate. We analyze the origin of this critical velocity in the low density region close to the boundary layer of the cloud. In the frame of the laser beam, we do a blow up on this low density region which can be described by a Painlev\'e equation and write the approximate equation satisfied by the wave function in this region. We find that there is always a drag around the laser beam. Though the beam passes through the surface of the cloud and the sound velocity is small in the Painlev\'e boundary layer, the shedding of vortices starts only when a threshold velocity is reached. This critical velocity is lower than the critical velocity computed for the corresponding 2D problem at the center of the cloud. At low velocity, there is a stationary solution without vortex and the drag is small. At the onset of vortex shedding, that is above the critical velocity, there is a drastic increase in drag.Comment: 4 pages, 4 figures (with 9 ps files

    On the shape of vortices for a rotating Bose Einstein condensate

    Full text link
    For a Bose-Einstein condensate placed in a rotating trap, we study the simplified energy of a vortex line derived in Aftalion-Riviere Phys. Rev. A 64, 043611 (2001) in order to determine the shape of the vortex line according to the rotational velocity and the elongation of the condensate. The energy reflects the competition between the length of the vortex which needs to be minimized taking into account the anisotropy of the trap and the rotation term which pushes the vortex along the z axis. We prove that if the condensate has the shape of a pancake, the vortex stays straight along the z axis while in the case of a cigar, the vortex is bent

    On mathematical models for Bose-Einstein condensates in optical lattices (expanded version)

    Full text link
    Our aim is to analyze the various energy functionals appearing in the physics literature and describing the behavior of a Bose-Einstein condensate in an optical lattice. We want to justify the use of some reduced models. For that purpose, we will use the semi-classical analysis developed for linear problems related to the Schr\"odinger operator with periodic potential or multiple wells potentials. We justify, in some asymptotic regimes, the reduction to low dimensional problems and analyze the reduced problems

    Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps

    Full text link
    We study a rotating Bose-Einstein Condensate in a strongly anharmonic trap (flat trap with a finite radius) in the framework of 2D Gross-Pitaevskii theory. We write the coupling constant for the interactions between the gas atoms as 1/ϵ21/\epsilon^2 and we are interested in the limit ϵ0\epsilon\to 0 (TF limit) with the angular velocity Ω\Omega depending on ϵ\epsilon. We derive rigorously the leading asymptotics of the ground state energy and the density profile when Ω\Omega tends to infinity as a power of 1/ϵ1/\epsilon. If Ω(ϵ)=Ω0/ϵ\Omega(\epsilon)=\Omega_0/\epsilon a ``hole'' (i.e., a region where the density becomes exponentially small as 1/ϵ1/\epsilon\to\infty) develops for Ω0\Omega_0 above a certain critical value. If Ω(ϵ)1/ϵ\Omega(\epsilon)\gg 1/\epsilon the hole essentially exhausts the container and a ``giant vortex'' develops with the density concentrated in a thin layer at the boundary. While we do not analyse the detailed vortex structure we prove that rotational symmetry is broken in the ground state for const.logϵ<Ω(ϵ)const./ϵ{\rm const.}|\log\epsilon|<\Omega(\epsilon)\lesssim \mathrm{const.}/\epsilon.Comment: LaTex2e, 28 pages, revised version to be published in Journal of Mathematical Physic

    Energy and Vorticity in Fast Rotating Bose-Einstein Condensates

    Full text link
    We study a rapidly rotating Bose-Einstein condensate confined to a finite trap in the framework of two-dimensional Gross-Pitaevskii theory in the strong coupling (Thomas-Fermi) limit. Denoting the coupling parameter by 1/\eps^2 and the rotational velocity by Ω\Omega, we evaluate exactly the next to leading order contribution to the ground state energy in the parameter regime |\log\eps|\ll \Omega\ll 1/(\eps^2|\log\eps|) with \eps\to 0. While the TF energy includes only the contribution of the centrifugal forces the next order corresponds to a lattice of vortices whose density is proportional to the rotational velocity.Comment: 19 pages, LaTeX; typos corrected, clarifying remarks added, some rearrangements in the tex

    Asymptotic analysis of a secondary bifurcation of the one-dimensional Ginzburg-Landau equations of superconductivity

    Get PDF
    The bifurcation of asymmetric superconducting solutions from the normal solution is considered for the one-dimensional Ginzburg--Landau equations by the methods of formal asymptotics. The behavior of the bifurcating branch depends on the parameters d, the size of the superconducting slab, and κ\kappa, the Ginzburg--Landau parameter. The secondary bifurcation in which the asymmetric solution branches reconnect with the symmetric solution branch is studied for values of (κ,d)(\kappa,d) for which it is close to the primary bifurcation from the normal state. These values of (κ,d)(\kappa,d) form a curve in the κd\kappa d-plane, which is determined. At one point on this curve, called the quintuple point, the primary bifurcations switch from being subcritical to supercritical, requiring a separate analysis. The results answer some of the conjectures of [A. Aftalion and W. C. Troy, Phys. D, 132 (1999), pp. 214--232]

    A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates

    Get PDF
    Numerical computations of stationary states of fast-rotating Bose-Einstein condensates require high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric control, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorithms to compute stationary vortex states: an imaginary time propagation method and a Sobolev gradient descent method. We first address the basic issue of the choice of the variable used to compute new metrics for the mesh adaptivity and show that simultaneously refinement using the real and imaginary part of the solution is successful. Mesh refinement using only the modulus of the solution as adaptivity variable fails for complicated test cases. Then we suggest an optimized algorithm for adapting the mesh during the evolution of the solution towards the equilibrium state. Considerable computational time saving is obtained compared to uniform mesh computations. The new method is applied to compute difficult cases relevant for physical experiments (large nonlinear interaction constant and high rotation rates).Comment: to appear in J. Computational Physic

    Vortex density models for superconductivity and superfluidity

    Full text link
    We study some functionals that describe the density of vortex lines in superconductors subject to an applied magnetic field, and in Bose-Einstein condensates subject to rotational forcing, in quite general domains in 3 dimensions. These functionals are derived from more basic models via Gamma-convergence, here and in a companion paper. In our main results, we use these functionals to obtain descriptions of the critical applied magnetic field (for superconductors) and forcing (for Bose-Einstein), above which ground states exhibit nontrivial vorticity, as well as a characterization of the vortex density in terms of a non local vector-valued generalization of the classical obstacle problem.Comment: 34 page

    Rotating superfluids in anharmonic traps: From vortex lattices to giant vortices

    Full text link
    We study a superfluid in a rotating anharmonic trap and explicate a rigorous proof of a transition from a vortex lattice to a giant vortex state as the rotation is increased beyond a limiting speed determined by the interaction strength. The transition is characterized by the disappearance of the vortices from the annulus where the bulk of the superfluid is concentrated due to centrifugal forces while a macroscopic phase circulation remains. The analysis is carried out within two-dimensional Gross-Pitaevskii theory at large coupling constant and reveals significant differences between 'soft' anharmonic traps (like a quartic plus quadratic trapping potential) and traps with a fixed boundary: In the latter case the transition takes place in a parameter regime where the size of vortices is very small relative to the width of the annulus whereas in 'soft' traps the vortex lattice persists until the width of the annulus becomes comparable to the vortex cores. Moreover, the density profile in the annulus where the bulk is concentrated is, in the 'soft' case, approximately gaussian with long tails and not of the Thomas-Fermi type like in a trap with a fixed boundary.Comment: Published version. Typos corrected, references adde
    corecore