2,093 research outputs found

    Numerical simulation of boundary-layer transition

    Get PDF
    The transition to turbulence in boundary layers was investigated by direct numerical solution of the nonlinear, three-dimensional, incompressible Navier-Stokes equations in the half-infinite domain over a flat plate. Periodicity was imposed in the streamwise and spanwise directions. A body force was applied to approximate the effect of a nonparallel mean flow. The numerical method was spectra, based on Fourier series and Jacobi polynomials, and used divergence-free basis functions. Extremely rapid convergence was obtained when solving the linear Orr-Sommerfeld equation. The early nonlinear and three-dimensional stages of transition, in a boundary layer disturbed by a vibrating ribbon, were successfully simulated. Excellent qualitative agreement was observed with either experiments or weakly nonlinear theories. In particular, the breakdown pattern was staggered or nonstaggered depending on the disturbance amplitude

    Vortex methods for separated flows

    Get PDF
    The numerical solution of the Euler or Navier-Stokes equations by Lagrangian vortex methods is discussed. The mathematical background is presented in an elementary fashion and includes the relationship with traditional point-vortex studies, the convergence to smooth solutions of the Euler equations, and the essential differences between two- and three-dimensional cases. The difficulties in extending the method to viscous or compressible flows are explained. The overlap with the excellent review articles available is kept to a minimum and more emphasis is placed on the area of expertise, namely two-dimensional flows around bluff bodies. When solid walls are present, complete mathematical models are not available and a more heuristic attitude must be adopted. The imposition of inviscid and viscous boundary conditions without conformal mappings or image vortices and the creation of vorticity along solid walls are examined in detail. Methods for boundary-layer treatment and the question of the Kutta condition are discussed. Practical aspects and tips helpful in creating a method that really works are explained. The topics include the robustness of the method and the assessment of accuracy, vortex-core profiles, timemarching schemes, numerical dissipation, and efficient programming. Calculations of flows past streamlined or bluff bodies are used as examples when appropriate

    Numerical simulation of boundary layers. Part 3: Turbulence and relaminarization in sink flows

    Get PDF
    Direct numerical simulations of sink-flow boundary layers, with acceleration parameters K between 1.5 and 3.0 x 10 to the -6 power, are presented. The three-dimensional, time-dependent Navier-Stokes equations are solved numerically using a spectral method, with about 10 to the -6 degrees of freedom. The flow is assumed to be statistically steady, and self-similar. A multiple-scale approximation and periodic conditions are applied to the fluctuations. The turbulence is studied using instantaneous and statistical results. Good agreement with the experiments of Jones and Launder is observed. Two effects of the favorable pressure gradient are to extend the logarithmic layer, and to alter the energy balance of the turbulence near the edge of the boundary layer. At very low Reynolds number the logarithmic layer is shortened and slightly displaced, but wall-layer streaks are present even at the lowest values of the Reynolds number for which turbulence can be sustained. Large quiescent patches appear in the flow. Relaminarization occurs at K = 3.0 x 10 to the -6 power, corresponding to a Reynolds number, based on momentum thickness, of about 330

    Contributions of numerical simulation data bases to the physics, modeling and measurement of turbulence

    Get PDF
    The use of simulation data bases for the examination of turbulent flows is an effective research tool. Studies of the structure of turbulence have been hampered by the limited number of probes and the impossibility of measuring all desired quantities. Also, flow visualization is confined to the observation of passive markers with limited field of view and contamination caused by time-history effects. Computer flow fields are a new resource for turbulence research, providing all the instantaneous flow variables in three-dimensional space. Simulation data bases also provide much-needed information for phenomenological turbulence modeling. Three dimensional velocity and pressure fields from direct simulations can be used to compute all the terms in the transport equations for the Reynolds stresses and the dissipation rate. However, only a few, geometrically simple flows have been computed by direct numerical simulation, and the inventory of simulation does not fully address the current modeling needs in complex turbulent flows. The availability of three-dimensional flow fields also poses challenges in developing new techniques for their analysis, techniques based on experimental methods, some of which are used here for the analysis of direct-simulation data bases in studies of the mechanics of turbulent flows

    Direct simulation of a turbulent oscillating boundary layer

    Get PDF
    The turbulent boundary layer driven by a freestream velocity that varies sinusoidally in time around a zero mean is considered. The flow has a rich behavior including strong pressure gradients, inflection points, and reversal. A theory for the velocity and stress profiles at high Reynolds number is formulated. Well-resolved direct Navier-Stokes simulations are conducted over a narrow range of Reynolds numbers, and the results are compared with the theoretical predictions. The flow is also computed over a wide range of Reynolds numbers using a new algebraic turbulence model; the results are compared with the direct simulations and the theory

    Numerical simulation of separated flows

    Get PDF
    A new numerical method, based on the Vortex Method, for the simulation of two-dimensional separated flows, was developed and tested on a wide range of gases. The fluid is incompressible and the Reynolds number is high. A rigorous analytical basis for the representation of the Navier-Stokes equation in terms of the vorticity is used. An equation for the control of circulation around each body is included. An inviscid outer flow (computed by the Vortex Method) was coupled with a viscous boundary layer flow (computed by an Eulerian method). This version of the Vortex Method treats bodies of arbitrary shape, and accurately computes the pressure and shear stress at the solid boundary. These two quantities reflect the structure of the boundary layer. Several versions of the method are presented and applied to various problems, most of which have massive separation. Comparison of its results with other results, generally experimental, demonstrates the reliability and the general accuracy of the new method, with little dependence on empirical parameters. Many of the complex features of the flow past a circular cylinder, over a wide range of Reynolds numbers, are correctly reproduced

    Numerical simulation of vortex breakdown by the vortex-filament method

    Get PDF
    The vortex filament method was applied to the simulation of vortex breakdown. The principal vortex region was represented by multiple filaments, and an axial velocity component was induced by a spiral winding of the filaments. First, an accuracy check was performed for a cylindrical swirling flow with simple analytical expressions for the axial and theta velocities. The result suggests that the flow field is simulated to any accuracy by increasing the number of filaments. Second, an axisymmetric type vortex breakdown was simulated, with experimental data serving as upstream conditions. The calculated axial and theta velocity contours show the breakdown of the vortex, including a rapid change in the vortex core, followed axially by a recovery zone and then a second breakdown. When three dimensional initial data are used the second breakdown appears to be of the spiral type in correspondence with experimental observations. The present method is easily used to simulate other types of vortex breakdown or other vortex flows with axial velocity

    Adaptive Embedded LES of the NASA Hump

    Get PDF
    A scheme for adaptive embedded LES is proposed which automatically determines boundaries for LES regions in a hybrid LES-RANS computation, with the goal of minimizing the LES part of the computation for maximum accuracy with minimum cost. The model-invariant hybrid formulation enables this scheme through greater flexibility in the placement of RANS-LES transitions. An adaptive embedded large-eddy simulation is carried out for the NASA hump test case and adaptive meshing is added to show how additional adaptive features may be controlled by the adaptive hybrid scheme

    An Old-Fashioned Framework for Machine Learning in Turbulence Modeling

    Full text link
    The objective is to provide clear and well-motivated guidance to Machine Learning (ML) teams, founded on our experience in empirical turbulence modeling. Guidance is also needed for modeling outside ML. ML is not yet successful in turbulence modeling, and many papers have produced unusable proposals either due to errors in math or physics, or to severe overfitting. We believe that "Turbulence Culture" (TC) takes years to learn and is difficult to convey especially considering the modern lack of time for careful study; important facts which are self-evident after a career in turbulence research and modeling and extensive reading are easy to miss. In addition, many of them are not absolute facts, a consequence of the gaps in our understanding of turbulence and the weak connection of models to first principles. Some of the mathematical facts are rigorous, but the physical aspects often are not. Turbulence models are surprisingly arbitrary. Disagreement between experts confuses the new entrants. In addition, several key properties of the models are ascertained through non-trivial analytical properties of the differential equations, which puts them out of reach of purely data-driven ML-type approaches. The best example is the crucial behavior of the model at the edge of the turbulent region (ETR). The knowledge we wish to put out here may be divided into "Mission" and "Requirements," each combining physics and mathematics. Clear lists of "Hard" and "Soft" constraints are presented. A concrete example of how DNS data could be used, possibly allied with ML, is first carried through and illustrates the large number of decisions needed. Our focus is on creating effective products which will empower CFD, rather than on publications.Comment: 27 pages, 3 figure

    The simulation of coherent structures in a laminar boundary layer

    Get PDF
    Coherent structures in turbulent shear flows were studied extensively by several techniques, including the VITA technique which selects rapidly accelerating or decelerating regions in the flow. The evolution of a localized disturbance in a laminar boundary layer shows strong similarity to the evolution of coherent structures in a turbulent-wall bounded flow. Starting from a liftup-sweep motion, a strong shear layer develops which shares many of the features seen in conditionally-sampled turbulent velocity fields. The structure of the shear layer, Reynolds stress distribution, and wall pressure footprint are qualitatively the same, indicating that the dynamics responsible for the structure's evolution are simple mechanisms dependent only on the presence of a high mean shear and a wall and independent of the effects of local random fluctuations and outer flow effects. As the disturbance progressed, the development of streak-like-high- and low-speed regions associated with the three-dimensionality
    corecore