2,228 research outputs found

    Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo

    Get PDF
    Neutrophil recruitment from blood to extravascular sites of sterile or infectious tissue damage is a hallmark of early innate immune responses, and the molecular events leading to cell exit from the bloodstream have been well defined1,2. Once outside the vessel, individual neutrophils often show extremely coordinated chemotaxis and cluster formation reminiscent of the swarming behaviour of insects3,4,5,6,7,8,9,10,11. The molecular players that direct this response at the single-cell and population levels within the complexity of an inflamed tissue are unknown. Using two-photon intravital microscopy in mouse models of sterile injury and infection, we show a critical role for intercellular signal relay among neutrophils mediated by the lipid leukotriene B4, which acutely amplifies local cell death signals to enhance the radius of highly directed interstitial neutrophil recruitment. Integrin receptors are dispensable for long-distance migration12, but have a previously unappreciated role in maintaining dense cellular clusters when congregating neutrophils rearrange the collagenous fibre network of the dermis to form a collagen-free zone at the wound centre. In this newly formed environment, integrins, in concert with neutrophil-derived leukotriene B4 and other chemoattractants, promote local neutrophil interaction while forming a tight wound seal. This wound seal has borders that cease to grow in kinetic concert with late recruitment of monocytes and macrophages at the edge of the displaced collagen fibres. Together, these data provide an initial molecular map of the factors that contribute to neutrophil swarming in the extravascular space of a damaged tissue. They reveal how local events are propagated over large-range distances, and how auto-signalling produces coordinated, self-organized neutrophil-swarming behaviour that isolates the wound or infectious site from surrounding viable tissue

    The extraordinary mid-infrared spectral properties of FeLoBAL Quasars

    Get PDF
    We present mid-infrared spectra of six FeLoBAL QSOs at 1<z<1.8, taken with the Spitzer space telescope. The spectra span a range of shapes, from hot dust dominated AGN with silicate emission at 9.7 microns, to moderately obscured starbursts with strong Polycyclic Aromatic Hydrocarbon (PAH) emission. The spectrum of one object, SDSS 1214-0001, shows the most prominent PAHs yet seen in any QSO at any redshift, implying that the starburst dominates the mid-IR emission with an associated star formation rate of order 2700 solar masses per year. With the caveats that our sample is small and not robustly selected, we combine our mid-IR spectral diagnostics with previous observations to propose that FeLoBAL QSOs are at least largely comprised of systems in which (a) a merger driven starburst is ending, (b) a luminous AGN is in the last stages of burning through its surrounding dust, and (c) which we may be viewing over a restricted line of sight range.Comment: ApJ, accepte

    FMD impact calculator

    Get PDF

    Blue Dots Team Transits Working Group Review

    Full text link
    Transiting planet systems offer an unique opportunity to observationally constrain proposed models of the interiors (radius, composition) and atmospheres (chemistry, dynamics) of extrasolar planets. The spectacular successes of ground-based transit surveys (more than 60 transiting systems known to-date) and the host of multi-wavelength, spectro-photometric follow-up studies, carried out in particular by HST and Spitzer, have paved the way to the next generation of transit search projects, which are currently ongoing (CoRoT, Kepler), or planned. The possibility of detecting and characterizing transiting Earth-sized planets in the habitable zone of their parent stars appears tantalizingly close. In this contribution we briefly review the power of the transit technique for characterization of extrasolar planets, summarize the state of the art of both ground-based and space-borne transit search programs, and illustrate how the science of planetary transits fits within the Blue Dots perspective.Comment: 9 pages, 3 figures, to be published in the proceedings (ASP Conf. Ser.) of the "Pathways Towards Habitable Planets" conference, held in Barcelona (14-18 Sep 2009

    Deep-water macroalgae from the Canary Islands: new records and biogeographical relationships

    Get PDF
    Due to the geographical location and paleobiogeography of the Canary Islands, the seaweed flora contains macroalgae with different distributional patterns. In this contribution, the biogeographical relations of several new records of deep-water macroalgae recently collected around the Canarian archipelago are discussed. These are Bryopsidella neglecta (Berthotd) Rietema,Discosporangium mesarthrocarpum (Meneghini) Hauck, Hincksia onslowensis (Amsler et Kapraun)P.C. Silva, Syringoderma floridana Henry, Peyssonnelia harveyana J. Agardh, Cryptonemia seminervis(C. Agardh) J. Agardh, Botryodadia wynnei Ballantine, Gloiocladia blomquistii (Searles) R. E.Norris, PIahchrysis peltata (W. R. Taylor) P. Huv4 et H. Huv4, Leptofauchea brasiliensis Joly, and Sarcodiotheca divaricata W. R. Taylor. These new records, especially those in the Florideophyceae,support the strong affinity of the Canary Islands seaweed flora with the warm-temperate Mediterranean-Atlantic region. Some species are recorded for the first time from the east coast of the Atlantic Ocean, enhancing the biogeographic relations of the Canarian marine flora with that of the western Atlantic regions

    Deforming tachyon kinks and tachyon potentials

    Full text link
    In this paper we investigate deformation of tachyon potentials and tachyon kink solutions. We consider the deformation of a DBI type action with gauge and tachyon fields living on D1-brane and D3-brane world-volume. We deform tachyon potentials to get other consistent tachyon potentials by using properly a deformation function depending on the gauge field components. Resolutions of singular tachyon kinks via deformation and applications of deformed tachyon potentials to scalar cosmology scenario are discussed.Comment: To appear in JHEP, 19 pages, 5 eps figures, minor changes and one reference adde

    Primordial Black Hole Formation during First-Order Phase Transitions

    Get PDF
    Primordial black holes (PBHs) may form in the early universe when pre-existing adiabatic density fluctuations enter into the cosmological horizon and recollapse. It has been suggested that PBH formation may be facilitated when fluctuations enter into the horizon during a strongly first-order phase transition which proceeds in approximate equilibrium. We employ general-relativistic hydrodynamics numerical simulations in order to follow the collapse of density fluctuations during first-order phase transitions. We find that during late stages of the collapse fluctuations separate into two regimes, an inner part existing exclusively in the high-energy density phase with energy density Ï”h\epsilon_{\rm h}, surrounded by an outer part which exists exclusively in the low-energy density phase with energy density Ï”h−L\epsilon_{\rm h}-L, where LL is the latent heat of the transition. We confirm that the fluctuation density threshold ÎŽÏ”/Ï”\delta\epsilon /\epsilon required for the formation of PBHs during first-order transitions decreases with increasing LL and falls below that for PBH formation during ordinary radiation dominated epochs. Our results imply that, in case PBHs form at all in the early universe, their mass spectrum is likely dominated by the approximate horizon masses during epochs when the universe undergoes phase transitions.Comment: 8 pages, 4 figures, revtex style, submitted to PR

    Probing the mass function of halo dark matter via microlensing

    Get PDF
    The simplest interpretation of the microlensing events observed towards the Large Magellanic Clouds is that approximately half of the mass of the Milky Way halo is in the form of MAssive Compact Halo Objects with M∌0.5M⊙M \sim 0.5 M_{\odot}. It is not possible, due to limits from star counts and chemical abundance arguments, for faint stars or white dwarves to comprise such a large fraction of the halo mass. This leads to the consideration of more exotic lens candidates, such as primordial black holes, or alternative lens locations. If the lenses are located in the halo of the Milky Way, then constraining their mass function will shed light on their nature. Using the current microlensing data we find, for four halo models, the best fit parameters for delta-function, primordial black hole and various power law mass functions. The best fit primordial black hole mass functions, despite having significant finite width, have likelihoods which are similar to, and for one particular halo model greater than, those of the best fit delta functions . We then use Monte Carlo simulations to investigate the number of microlensing events necessary to determine whether the MACHO mass function has significant finite width. If the correct halo model is known, then ∌\sim 500 microlensing events will be sufficient, and will also allow determination of the mass function parameters to ∌5\sim 5%.Comment: 28 pages including 14 figures, version to appear in ApJ, minor changes to discussio

    How players exploit variability and regularity of game actions in female volleyball teams

    Get PDF
    Variability analysis has been used to understand how competitive constraints shape different behaviours in team sports. In this study, we analysed and compared variability of tactical performance indices in players within complex I at two different competitive levels in volleyball. We also examined whether variability was influenced by set type and period. Eight matches from the 2012 Olympics competition and from the Portuguese national league in the 2014–2015 season were analysed (1496 rallies). Variability of setting conditions, attack zone, attack tempo and block opposition was assessed using Shannon entropy measures. Magnitude-based inferences were used to analyse the practical significance of compared values of selected variables. Results showed differences between elite and national teams for all variables, which were co-adapted to the competitive constraints of set type and set periods. Elite teams exploited system stability in setting conditions and block opposition, but greater unpredictability in zone and tempo of attack. These findings suggest that uncertainty in attacking actions was a key factor that could only be achieved with greater performance stability in other game actions. Data suggested how coaches could help setters develop the capacity to play at faster tempos, diversifying attack zones, especially at critical moments in competition
    • 

    corecore