720 research outputs found

    Peristaltic Transport of a Physiological Fluid in an Asymmetric Porous Channel in the Presence of an External Magnetic Field

    Full text link
    The paper deals with a theoretical investigation of the peristaltic transport of a physiological fluid in a porous asymmetric channel under the action of a magnetic field. The stream function, pressure gradient and axial velocity are studied by using appropriate analytical and numerical techniques. Effects of different physical parameters such as permeability, phase difference, wave amplitude and magnetic parameter on the velocity, pumping characteristics, streamline pattern and trapping are investigated with particular emphasis. The computational results are presented in graphical form. The results are found to be in perfect agreement with those of a previous study carried out for a non-porous channel in the absence of a magnetic field

    Immobilization of bovine serum albumin on the chitosan/PVA film

    Get PDF
    Chitosan/polyvinyl alcohol (Chitosan/PVA) blended film was prepared by direct blend process and solution casting methods. In order to reduce the swelling ratio and enhance the chemical and mechanical stability, Chitosan/PVA film was crosslinked with glutaraldehyde in order to produce Chitosan-g-PVA. Bovine serum albumin (BSA) was used as a model protein to incorporate into the Chitosan-g-PVA. The chemical structure and morphological characteristics of films were studied by FT-IR and scanning electron microscopy (SEM). Mechanical and physical properties of blended films such as tensile properties in the dry and wet states, water uptake and water contact angle measurement were characterized. Blending PVA and chitosan improved strength and flexibility of the films. Crosslinking with glutaraldehyde further improves the tensile strength and decrease the hydrophilicity of films. BSA immobilized on the Chitosan-g-PVA film was calculated as BSA encapsulation efficiency

    Evaluation of the Universal Screening Strategy in Qatar for the Management of Pregnant Women Carrying Group B Streptococci

    Get PDF
    Group B Streptococcus infection (GBS) has emerged as a serious disease, infecting 18,000 people in the United States annually including life-threatening illness in about 8,000 newly-born infants. To evaluate the efficiency of the current universal screening strategy for the management of GBS carriers a retrospective analysis was made of the records of 1,620 pregnant women in Qatar, 550 of whom were found to be carriers. These latter were then used as a group to be compared with 450 uninfected pregnant women in terms of nationality, parity, age, treatment, and outcome. Young and nullipara pregnant women had a high incidence of GBS but there was no significant effect on birth mortality and morbidity regardless of whether or not they received treatment with antibiotics. It is suggested that the cost of screening for GBS at the 35 th week of gestation cannot be justified.qscienc

    Adolescent male with anorexia nervosa: a case report from Iraq

    Get PDF
    This is the first reported case of an adolescent male with anorexia nervosa in Iraq. This disorder is believed to be rare in males across cultures and uncommon for both genders in Arab countries. The patient met the DSM-IV diagnostic criteria for anorexia nervosa. He was hospitalized and received medical and psychiatric treatment at local facilities as discussed below and responded well to treatment

    The statistical investigation of type Ib/c and II supernovae and their host galaxies

    Full text link
    This is a statistical study of the properties of type Ib/c and II supernovae and of the integral parameters of their spiral host galaxies. The methods of one-dimensional and multivariate statistics were applied to the data sample. It was found that the Ib/c supernovae are more concentrated radially toward the centers of the galaxies than those of type II. The distributions of the radial distances R(SN)/R(25) for the type Ib/c and II supernovae in active galaxies are more concentrated toward the center than in normal galaxies. This effect is stronger for type Ib/c than for type II supernovae.Comment: 8 pages, 2 figure

    Scheduling M2M traffic over LTE uplink of a dense small cell network

    Get PDF
    We present an approach to schedule Long Term Evolution (LTE) uplink (UL) Machine-to-Machine (M2M) traffic in a densely deployed heterogeneous network, over the street lights of a big boulevard for smart city applications. The small cells operate with frequency reuse 1, and inter-cell interference (ICI) is a critical issue to manage. We consider a 3rd Generation Partnership Project (3GPP) compliant scenario, where single-carrier frequency-division multiple access (SC-FDMA) is selected as the multiple access scheme, which requires that all resource blocks (RBs) allocated to a single user have to be contiguous in the frequency within each time slot. This adjacency constraint limits the flexibility of the frequency-domain packet scheduling (FDPS) and inter-cell interference coordination (ICIC), when trying to maximize the scheduling objectives, and this makes the problem NP-hard. We aim to solve a multi-objective optimization problem, to maximize the overall throughput, maximize the radio resource usage and minimize the ICI. This can be modelled through a mixed-integer linear programming (MILP) and solved through a heuristic implementable in the standards. We propose two models. The first one allocates resources based on the three optimization criteria, while the second model is more compact and is demonstrated through numerical evaluation in CPLEX, to be equivalent in the complexity, while it performs better and executes faster. We present simulation results in a 3GPP compliant network simulator, implementing the overall protocol stack, which support the effectiveness of our algorithm, for different M2M applications, with respect to the state-of-the-art approaches

    Batch and continuous removal of heavy metals from industrial effluents using microbial consortia

    Get PDF
    Bio-removal of heavy metals, using microbial biomass, increasingly attracting scientific attention due to their significant role in purification of different types of wastewaters making it reusable. Heavy metals were reported to have a significant hazardous effect on human health, and while the conventional methods of removal were found to be insufficient; microbial biosorption was found to be the most suitable alternative. In this work, an immobilized microbial consortium was generated using Statistical Design of Experiment (DOE) as a robust method to screen the efficiency of the microbial isolates in heavy metal removal process. This is the first report of applying Statistical DOE to screen the efficacy of microbial isolates to remove heavy metals instead of screening normal variables. A mixture of bacterial biomass and fungal spores was used both in batch and continuous modes to remove Chromium and Iron ions from industrial effluents. Bakery yeast was applied as a positive control, and all the obtained biosorbent isolates showed more significant efficiency in heavy metal removal. In batch mode, the immobilized biomass was enclosed in a hanged tea bag-like cellulose membrane to facilitate the separation of the biosorbent from the treated solutions, which is one of the main challenges in applying microbial biosorption at large scale. The continuous flow removal was performed using fixed bed mini-bioreactor, and the process was optimized in terms of pH (6) and flow rates (1 ml/min) using Response Surface Methodology. The most potential biosorbent microbes were identified and characterized. The generated microbial consortia and process succeeded in the total removal of Chromium ions and more than half of Iron ions both from standard solutions and industrial effluents
    corecore