1,764 research outputs found

    Automated supervised classification of variable stars I. Methodology

    Get PDF
    The fast classification of new variable stars is an important step in making them available for further research. Selection of science targets from large databases is much more efficient if they have been classified first. Defining the classes in terms of physical parameters is also important to get an unbiased statistical view on the variability mechanisms and the borders of instability strips. Our goal is twofold: provide an overview of the stellar variability classes that are presently known, in terms of some relevant stellar parameters; use the class descriptions obtained as the basis for an automated `supervised classification' of large databases. Such automated classification will compare and assign new objects to a set of pre-defined variability training classes. For every variability class, a literature search was performed to find as many well-known member stars as possible, or a considerable subset if too many were present. Next, we searched on-line and private databases for their light curves in the visible band and performed period analysis and harmonic fitting. The derived light curve parameters are used to describe the classes and define the training classifiers. We compared the performance of different classifiers in terms of percentage of correct identification, of confusion among classes and of computation time. We describe how well the classes can be separated using the proposed set of parameters and how future improvements can be made, based on new large databases such as the light curves to be assembled by the CoRoT and Kepler space missions.Comment: This paper has been accepted for publication in Astronomy and Astrophysics (reference AA/2007/7638) Number of pages: 27 Number of figures: 1

    Quantum Particles as Conceptual Entities: A Possible Explanatory Framework for Quantum Theory

    Full text link
    We put forward a possible new interpretation and explanatory framework for quantum theory. The basic hypothesis underlying this new framework is that quantum particles are conceptual entities. More concretely, we propose that quantum particles interact with ordinary matter, nuclei, atoms, molecules, macroscopic material entities, measuring apparatuses, ..., in a similar way to how human concepts interact with memory structures, human minds or artificial memories. We analyze the most characteristic aspects of quantum theory, i.e. entanglement and non-locality, interference and superposition, identity and individuality in the light of this new interpretation, and we put forward a specific explanation and understanding of these aspects. The basic hypothesis of our framework gives rise in a natural way to a Heisenberg uncertainty principle which introduces an understanding of the general situation of 'the one and the many' in quantum physics. A specific view on macro and micro different from the common one follows from the basic hypothesis and leads to an analysis of Schrodinger's Cat paradox and the measurement problem different from the existing ones. We reflect about the influence of this new quantum interpretation and explanatory framework on the global nature and evolutionary aspects of the world and human worldviews, and point out potential explanations for specific situations, such as the generation problem in particle physics, the confinement of quarks and the existence of dark matter.Comment: 45 pages, 10 figure

    Quantum Experimental Data in Psychology and Economics

    Full text link
    We prove a theorem which shows that a collection of experimental data of probabilistic weights related to decisions with respect to situations and their disjunction cannot be modeled within a classical probabilistic weight structure in case the experimental data contain the effect referred to as the 'disjunction effect' in psychology. We identify different experimental situations in psychology, more specifically in concept theory and in decision theory, and in economics (namely situations where Savage's Sure-Thing Principle is violated) where the disjunction effect appears and we point out the common nature of the effect. We analyze how our theorem constitutes a no-go theorem for classical probabilistic weight structures for common experimental data when the disjunction effect is affecting the values of these data. We put forward a simple geometric criterion that reveals the non classicality of the considered probabilistic weights and we illustrate our geometrical criterion by means of experimentally measured membership weights of items with respect to pairs of concepts and their disjunctions. The violation of the classical probabilistic weight structure is very analogous to the violation of the well-known Bell inequalities studied in quantum mechanics. The no-go theorem we prove in the present article with respect to the collection of experimental data we consider has a status analogous to the well known no-go theorems for hidden variable theories in quantum mechanics with respect to experimental data obtained in quantum laboratories. For this reason our analysis puts forward a strong argument in favor of the validity of using a quantum formalism for modeling the considered psychological experimental data as considered in this paper.Comment: 15 pages, 4 figure

    What is Quantum? Unifying Its Micro-Physical and Structural Appearance

    Full text link
    We can recognize two modes in which 'quantum appears' in macro domains: (i) a 'micro-physical appearance', where quantum laws are assumed to be universal and they are transferred from the micro to the macro level if suitable 'quantum coherence' conditions (e.g., very low temperatures) are realized, (ii) a 'structural appearance', where no hypothesis is made on the validity of quantum laws at a micro level, while genuine quantum aspects are detected at a structural-modeling level. In this paper, we inquire into the connections between the two appearances. We put forward the explanatory hypothesis that, 'the appearance of quantum in both cases' is due to 'the existence of a specific form of organisation, which has the capacity to cope with random perturbations that would destroy this organisation when not coped with'. We analyse how 'organisation of matter', 'organisation of life', and 'organisation of culture', play this role each in their specific domain of application, point out the importance of evolution in this respect, and put forward how our analysis sheds new light on 'what quantum is'.Comment: 10 page

    Close-up of primary and secondary asteroseismic CoRoT targets and the ground-based follow-up observations

    Full text link
    To optimise the science results of the asteroseismic part of the CoRoT satellite mission a complementary simultaneous ground-based observational campaign is organised for selected CoRoT targets. The observations include both high-resolution spectroscopic and multi-colour photometric data. We present the preliminary results of the analysis of the ground-based observations of three targets. A line-profile analysis of 216 high-resolution FEROS spectra of the delta Sct star HD 50844 reveals more than ten pulsation frequencies in the frequency range 5-18 c/d, including possibly one radial fundamental mode (6.92 c/d). Based on more than 600 multi-colour photometric datapoints of the beta Cep star HD180642, spanning about three years and obtained with different telescopes and different instruments, we confirm the presence of a dominant radial mode nu1=5.48695 c/d, and detect also its first two harmonics. We find evidence for a second mode nu2=0.3017 c/d, possibly a g-mode, and indications for two more frequencies in the 7-8 c/d domain. From Stromgren photometry we find evidence for the hybrid delta Sct/gamma Dor character of the F0 star HD 44195, as frequencies near 3 c/d and 21 c/d are detected simultaneously in the different filters.Comment: 7 pages, 6 figures, HELAS II International Conference "Helioseismology, Asteroseismology and MHD Connections", 2008, J.Phys.: Conf. Ser. 118, 01207

    Concepts and Their Dynamics: A Quantum-Theoretic Modeling of Human Thought

    Full text link
    We analyze different aspects of our quantum modeling approach of human concepts, and more specifically focus on the quantum effects of contextuality, interference, entanglement and emergence, illustrating how each of them makes its appearance in specific situations of the dynamics of human concepts and their combinations. We point out the relation of our approach, which is based on an ontology of a concept as an entity in a state changing under influence of a context, with the main traditional concept theories, i.e. prototype theory, exemplar theory and theory theory. We ponder about the question why quantum theory performs so well in its modeling of human concepts, and shed light on this question by analyzing the role of complex amplitudes, showing how they allow to describe interference in the statistics of measurement outcomes, while in the traditional theories statistics of outcomes originates in classical probability weights, without the possibility of interference. The relevance of complex numbers, the appearance of entanglement, and the role of Fock space in explaining contextual emergence, all as unique features of the quantum modeling, are explicitly revealed in this paper by analyzing human concepts and their dynamics.Comment: 31 pages, 5 figure

    The Tacit ‘Quantum’ of Meeting the Aesthetic Sign; Contextualize, Entangle, Superpose, Collapse or Decohere

    Get PDF
    The semantically ambiguous nature of the sign and aspects of non-classicality of elementary matter as described by quantum theory show remarkable coherent analogy. We focus on how the ambiguous nature of the image, text and art work bears functional resemblance to the dynamics of contextuality, entanglement, superposition, collapse and decoherence as these phenomena are known in quantum theory. These quantumlike properties in linguistic signs have previously been identified in formal descritions of e.g. concept combinations and mental lexicon representations and have been reported on in the literature. In this approach the informationalized, communicated, mediatized conceptual configuration—of e.g. the art work—in the personal reflected mind behaves like a quantum state function in a higher dimensional complex space, in which it is time and again contextually collapsed and further cognitively entangled (Aerts et al. in Found Sci 4:115–132, 1999; in Lect Notes Comput Sci 7620:36–47, 2012). The observer–consumer of signs becomes the empowered ‘produmer’ (Floridi in The philosophy of information, Oxford University Press, Oxford, 2011) creating the cognitive outcome of the interaction, while loosing most of any ‘classical givenness’ of the sign (Bal and Bryson in Art Bull 73:174–208, 1991). These quantum-like descriptions are now developed here in four example aesthetic signs; the installation Mist room by Ann Veronica Janssens (2010), the installation Sections of a happy moment by David Claerbout (2010), the photograph The Falling Man by Richard Drew (New York Times, p. 7, September 12, 2001) and the documentary Huicholes. The Last Peyote Guardians by Vilchez and Stefani (2014). Our present work develops further the use of a previously developed quantum model for concept representation in natural language. In our present approach of the aesthetic sign, we extend to individual—idiosyncratic—observer contexts instead of socially shared group contexts, and as such also include multiple idiosyncratic creation of meaning and experience. This irreducible superposition emerges as the core feature of the aesthetic sign and is most critically embedded in the ‘no-interpretation’ interpretation of the documentary signal

    Preparing the COROT space mission: new variable stars in the galactic Anticenter direction

    Get PDF
    The activities related to the preparation of the asteroseismic, photometric space mission COROT are described. Photoelectric observations, wide--field CCD photometry, uvbyB calibrations and further time--series have been obtained at different observatories and telescopes. They have been planned to complete the COROT programme in the direction of the galactic Anticenter. In addition to suitable asteroseismic targets covering the different evolutionary stages between ZAMS and TAMS, we discovered several other variable stars, both pulsating and geometrical. We compared results on the incidence of variability in the galactic Center and Anticenter directions. Physical parameters have been obtained and evolutionary tracks fitting them have been calculated. The peculiarities of some individual stars alre pointed out. Paper based on observations collected at the San Pedro Martir, Sierra Nevada, Teide, La Silla, Haute-Provence and Roque de Los Muchachos (Telescopio Nazionale Galileo and Mercator telescopes) observatories.Comment: 13 pages, 9 figures. Accepted for The Astronomical Journal (2005 May volume

    On the variability of HD 170699 - a possible COROT target

    Get PDF
    We present the analysis of the variability of HD 170699, a COROT star showing the characteristics of a non evolutionary Delta Scuti star with high rotational velocity. There is a clear period of 10.45 c/d with 5.29 mmag amplitude in the y filter. From the data, it can be seen that the star shows multi-periodicity and it is necessary to add more frequencies to adjust the observationsComment: To appear in RevMexAA(SC) in Proceedings of XII Reunion Regional Latinoamericana de la UAI held in Isla Margarita, Venezuela, October 22-26, 200
    • …
    corecore