13 research outputs found

    Accept'Hydro: a tool for evaluating potential wetland areas at floodplain scale.

    Get PDF
    National audienceAlluvial wetlands have the functions of hydrological regulation and water purification, but are also of interest for preventing flooding and improving the water quality of the natural environment that serves as a reserve for drinking water and biodiversity. Delimiting these areas is often difficult because it involves both the physical characteristics (topography, river morphology etc.) and hydrodynamic characteristics of the porous medium (permeability etc.) The proposed tool, Accept'Hydro, includes a hydrodynamic simulation of the river, the alluvial aquifer and their interaction, and produces maps of alluvial wetlands with using hydrological criteria. The tool's primary step consists of selecting the studied area using Google Maps, which automatically triggers the generation of a non-uniform mesh covering this area, as well as all the inputs needed for the hydrodynamic simulation to run. The hydrodynamic model based on the equations of Peyrard et al. (2008) allows water levels and flow rates in the river and the alluvial aquifer to be simulated with a non-uniform mesh (cells from 1 to 200 metres per side), combined with a good performance in CPU calculation time. The software program allows the impacts of climate change (changes in hydrology and temperature) and/or anthropogenic change on the hydrodynamic functioning of wetlands to be assessed, and the impact of infrastructure and hydropower facilities on the river to be tested

    Simulation du fonctionnement hydrodynamique des milieux humides dans les plaines alluviales

    Get PDF
    International audienceLa modélisation hydrodynamique est peu utilisée afin de simuler le fonctionnement des milieux humides à l’échelle des plaines alluviales et nécessite souvent de nombreuses données d’entrée souvent difficiles à acquérir. On présente ici un outil de simulation, Accept’Hydro, qui est alimenté par quatre données d’entrée : le modèle numérique d’élévation (IGN), les données piézométriques (banque ADES), l’historique des débits rivières (banque HYDRO), et le réseau hydrographie (BD Carthage). Après l’étape de création automatique du maillage non-uniforme, adapté au domaine étudié, le logiciel génère en sortie les hauteurs d’eau et les vitesses d’écoulement dans la rivière et dans la nappe souterraine, au pas de temps journalier. Les données simulées, sur une période de temps minimal de 10 ans, sont traitées afin de cartographier les milieux humides potentiels en bordure de cours d’eau. De plus, cet outil permet d’intégrer des hypothèses sur l’évolution des débits afin de prendre en compte les modifications dues au change ment climatique, et d’en simuler les impacts sur le fonctionnement hydrologique. On présente ici les résultats d’Accept’Hydro sur la plaine alluviale de la Garonne et ses milieux humides pour la période 2004-2013, dans le département du Tarn-et-Garonne. Dans ce secteur, les simulations prévoient une diminution de la superficie des milieux humides pour l’horizon 2030, en partant d’hypothèses de diminution des débits saisonniers

    Development of a continuous model of root growth, aggregating root architecture of plants

    No full text
    La modélisation et la simulation de la croissance racinaire des plantes en relation avec l'eau et le transfert de nutriments dans le sol constituent un défi majeur permettant des applications dans diverses thématiques de recherche. Les modèles de croissance racinaire ont été classés en SM (Structural Models), FSM (Functional Structural Models) et DBM (Density Based Models). Les modèles basés sur des représentations explicites de la structure du système racinaire simulent des systèmes de manière réaliste. Les modèles basés sur des densités agrègent le développement racinaire et décrivent l'évolution de densités racinaires dans l'espace et le temps. Le principal avantage de ce type de modèles basés sur des formulations continues est le temps de calcul qui est indépendant du nombre de racines, ce qui est particulièrement utile pour des applications à l'échelle d'une population de plantes. De plus, l'utilisation de modèles continus facilite le couplage avec d'autres modèles fonctionnels et physiques qui sont aussi basés sur des équations continues, tels que le transport de nutriments et d'eau dans le sol.Le but de la thèse est de proposer un modèle continu générique (i.e. applicable à une large diversité d'architectures racinaires) et minimal (i.e. avec le moins de paramètres possible), basé sur une équation aux dérivées partielles. Ce modèle est présenté en 3D et considère le nombre d'apex par unité de volume comme étant la variable de sortie. L'équation est composée de trois principaux phénomènes physiques, à savoir l'advection, la diffusion et la réaction, qui agrègent différents processus racinaires de développement et d'architecture, e.g. la croissance primaire, la ramification et la mortalité. Un schéma numérique basé sur la méthode de splitting d'opérateurs est proposée afin de résoudre l'équation en séparant les trois opérateurs physiques. C'est une méthode puissante et numériquement consistante qui permet de choisir des schémas numériques appropriés pour chaque opérateur. Des données observées avec leur variabilité, qui sont codées en utilisant les modèles architecturaux, sont permettent la calibration du modèle continu. Le modèle continu est donc utilisé afin de simuler l'évolution spatio-temporelle de la densité moyenne du nombre d'apex pour des systèmes racinaires dont leurs développements diffèrent. L'évaluation de cette approche de modélisation est traitée sur : 1- des racines horizontales d'eucalyptus, chacune contrôlée par un apex principal ; 2- des systèmes centralisés, e.g. les systèmes du maïs, et 3- des systèmes décentralisés, e.g. les systèmes de chiendent. Les résultats de la méthode de calibration sont satisfaisants et ont permis de définir et simuler diverses stratégies de croissance racinaire.Modelling and simulating plant root growth in connection with soil water and nutrient transfer is an important challenge that finds applications in many fields of research. Root growth models have been classified into SM (Structural Models), FSM (Functional Structural Models) and DBM (Density Based Models). Models based on explicit representations of root system structures simulate realistic patterns. Density based models aggregate root development and describe the evolution of root densities in space and time. The main advantage of this kind of models based on continuous formulation is that the computational time is independent of the number of roots, which is especially useful for applications at the plant stand scale. Moreover, the use of continuous models facilitates coupling with other functional and physical models that are also based on continuous equations such as water and nutrient transport.The aim of the thesis is to propose a minimal (i.e. involving a minimum number of parameters) and generic (i.e. applicable to a wide range of root architectures) continuous model based on a partial differential equation. This model is presented in a 3D form and considers the number of apices per unit volume of soil as output variable. The equation includes three main physical phenomena, namely advection, diffusion andreaction, which aggregate different aspects of root architectural and developmental rules, e.g. primary growth, branching and mortality. A numerical scheme based on an operator splitting method is proposed to solve the equation by separating the three different processes. It is a powerful and consistent numerical method that allows the use of appropriate numerical scheme for each operator. Observed data with their variability, which are encoded using architectural models, are used to calibrate the continuous model. The continuous model is then used to simulate the spatio-temporal evolution of the mean density of apex number for root systems with different developmental rules. The evaluation of this modelling approach is carried out on : 1- horizontal roots of eucalyptus that are controlled by a main apex ; 2- centralizedsystems, e.g. maize root systems, and 3- decentralized root systems, e.g. couch grass root systems.The results of the calibration method were satisfactory and allowed us to define and simulate different root growth strategies

    Développement d'un modèle continu d'enracinement, basé sur l'agrégation de l'architecture racinaire des plantes

    No full text
    La modélisation et la simulation de la croissance racinaire des plantes en relation avec l'eau et le transfert de nutriments dans le sol constituent un défi majeur permettant des applications dans diverses thématiques de recherche. Les modèles de croissance racinaire ont été classés en SM (Structural Models), FSM (Functional Structural Models) et DBM (Density Based Models). Les modèles basés sur des représentations explicites de la structure du système racinaire simulent des systèmes de manière réaliste. Les modèles basés sur des densités agrègent le développement racinaire et décrivent l'évolution de densités racinaires dans l'espace et le temps. Le principal avantage de ce type de modèles basés sur des formulations continues est le temps de calcul qui est indépendant du nombre de racines, ce qui est particulièrement utile pour des applications à l'échelle d'une population de plantes. De plus, l'utilisation de modèles continus facilite le couplage avec d'autres modèles fonctionnels et physiques qui sont aussi basés sur des équations continues, tels que le transport de nutriments et d'eau dans le sol.Le but de la thèse est de proposer un modèle continu générique (i.e. applicable à une large diversité d'architectures racinaires) et minimal (i.e. avec le moins de paramètres possible), basé sur une équation aux dérivées partielles. Ce modèle est présenté en 3D et considère le nombre d'apex par unité de volume comme étant la variable de sortie. L'équation est composée de trois principaux phénomènes physiques, à savoir l'advection, la diffusion et la réaction, qui agrègent différents processus racinaires de développement et d'architecture, e.g. la croissance primaire, la ramification et la mortalité. Un schéma numérique basé sur la méthode de splitting d'opérateurs est proposée afin de résoudre l'équation en séparant les trois opérateurs physiques. C'est une méthode puissante et numériquement consistante qui permet de choisir des schémas numériques appropriés pour chaque opérateur. Des données observées avec leur variabilité, qui sont codées en utilisant les modèles architecturaux, sont permettent la calibration du modèle continu. Le modèle continu est donc utilisé afin de simuler l'évolution spatio-temporelle de la densité moyenne du nombre d'apex pour des systèmes racinaires dont leurs développements diffèrent. L'évaluation de cette approche de modélisation est traitée sur : 1- des racines horizontales d'eucalyptus, chacune contrôlée par un apex principal ; 2- des systèmes centralisés, e.g. les systèmes du maïs, et 3- des systèmes décentralisés, e.g. les systèmes de chiendent. Les résultats de la méthode de calibration sont satisfaisants et ont permis de définir et simuler diverses stratégies de croissance racinaire.Modelling and simulating plant root growth in connection with soil water and nutrient transfer is an important challenge that finds applications in many fields of research. Root growth models have been classified into SM (Structural Models), FSM (Functional Structural Models) and DBM (Density Based Models). Models based on explicit representations of root system structures simulate realistic patterns. Density based models aggregate root development and describe the evolution of root densities in space and time. The main advantage of this kind of models based on continuous formulation is that the computational time is independent of the number of roots, which is especially useful for applications at the plant stand scale. Moreover, the use of continuous models facilitates coupling with other functional and physical models that are also based on continuous equations such as water and nutrient transport.The aim of the thesis is to propose a minimal (i.e. involving a minimum number of parameters) and generic (i.e. applicable to a wide range of root architectures) continuous model based on a partial differential equation. This model is presented in a 3D form and considers the number of apices per unit volume of soil as output variable. The equation includes three main physical phenomena, namely advection, diffusion andreaction, which aggregate different aspects of root architectural and developmental rules, e.g. primary growth, branching and mortality. A numerical scheme based on an operator splitting method is proposed to solve the equation by separating the three different processes. It is a powerful and consistent numerical method that allows the use of appropriate numerical scheme for each operator. Observed data with their variability, which are encoded using architectural models, are used to calibrate the continuous model. The continuous model is then used to simulate the spatio-temporal evolution of the mean density of apex number for root systems with different developmental rules. The evaluation of this modelling approach is carried out on : 1- horizontal roots of eucalyptus that are controlled by a main apex ; 2- centralizedsystems, e.g. maize root systems, and 3- decentralized root systems, e.g. couch grass root systems.The results of the calibration method were satisfactory and allowed us to define and simulate different root growth strategies.MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    10. Les outils d’aide à la décision

    No full text
    L'eau constitue un système complexe formé de la ressource elle-même, des écosystèmes qui l'utilisent et qui l'abritent et des usages faits par la société. La gestion de ce système se heurte à la difficulté majeure de la prise en compte et de la conciliation d’intérêts, souvent peu ou pas compatibles. Formaliser les enjeux et les valeurs La conciliation de ces intérêts a été pendant longtemps régie par une vision utilitariste et des notions d'intérêt général, parmi lesquelles figurent la produ..

    A minimal continuous model for simulating root growth and development of plant root systems

    No full text
    ACL-12-32International audienceAims: This paper proposes a general and minimal continuous model of root growth that aggregates architectural and developmental information and that can be used at different spatial scales. Methods: The model is described by advection, diffusion and reaction operators, which are related to growth processes such as primary growth, branching, mortality and root death. Output variable is the number of root tips per unit volume of soil. Operator splitting techniques are used to fit, solve and analyze the model with regards to ontogeny. The modeling approach is illustrated on a 2D case study concerning a part of Eucalyptus root system. Results: Operator splitting is helpful to fit the model. Basic knowledge on root architecture and development allows decreasing the number of unknown parameters and defining ontogenic phases on which specific calibrations must be carried out. Simulation results reproduce quantitatively the dynamic evolution of root density distribution with a good accuracy. Conclusion: The proposed root growth model is based on a continuous formalism that can be easily coupled with other physical models, e.g. nutrient and water transfer. The equations are generic and allow simulating different root architectures and growth strategies. They can be efficiently solved using adapted numerical methods
    corecore