189 research outputs found

    Polymyxin-Resistant Acinetobacter spp. Isolates: What is Next?

    Get PDF
    Univ Fed Sao Paulo, Div Infect Dis, Lab Especial Microbiol Clin, BR-04025010 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Div Infect Dis, Lab Especial Microbiol Clin, BR-04025010 Sao Paulo, SP, BrazilWeb of Scienc

    Clinical application of next-generation sequencing of plasma cell-free DNA for genotyping untreated advanced non-small cell lung cancer

    Get PDF
    Simple Summary Plasma ctDNA is a material source for molecular analysis particularly useful when tissue is not available or sufficient. NGS-based plasma genotyping should be integrated into the clinical workup of newly diagnosed advanced NSCLC. Background: Analysis of circulating tumor DNA (ctDNA) has remarkable potential as a non-invasive lung cancer molecular diagnostic method. This prospective study addressed the clinical value of a targeted-gene amplicon-based plasma next-generation sequencing (NGS) assay to detect actionable mutations in ctDNA in patients with newly diagnosed advanced lung adenocarcinoma. Methods: ctDNA test performance and concordance with tissue NGS were determined, and the correlation between ctDNA findings, clinical features, and clinical outcomes was evaluated in 115 patients with paired plasma and tissue samples. Results: Targeted-gene NGS-based ctDNA and NGS-based tissue analysis detected 54 and 63 genomic alterations, respectively; 11 patients presented co-mutations, totalizing 66 hotspot mutations detected, 51 on both tissue and plasma, 12 exclusively on tissue, and 3 exclusively on plasma. NGS-based ctDNA revealed a diagnostic performance with 81.0% sensitivity, 95.3% specificity, 94.4% PPV, 83.6% NPV, test accuracy of 88.2%, and Cohen's Kappa 0.764. PFS and OS assessed by both assays did not significantly differ. Detection of ctDNA alterations was statistically associated with metastatic disease (p = 0.013), extra-thoracic metastasis (p = 0.004) and the number of organs involved (p = 0.010). Conclusions: This study highlights the potential use of ctDNA for mutation detection in newly diagnosed NSCLC patients due to its high accuracy and correlation with clinical outcomes

    Revision and annotation of DNA barcode records for marine invertebrates: Report of the 8th iBOL conference hackathon

    Get PDF
    The accuracy of specimen identification through DNA barcoding and metabarcoding relies on reference libraries containing records with reliable taxonomy and sequence quality. The considerable growth in barcode data requires stringent data curation, especially in taxonomically difficult groups such as marine invertebrates. A major effort in curating marine barcode data in the Barcode of Life Data Systems (BOLD) was undertaken during the 8th International Barcode of Life Conference (Trondheim, Norway, 2019). Major taxonomic groups (crustaceans, echinoderms, molluscs, and polychaetes) were reviewed to identify those which had disagreement between Linnaean names and Barcode Index Numbers (BINs). The records with disagreement were annotated with four tags: A) MIS-ID (misidentified, mislabeled, or contaminated records), b) AMBIG (ambiguous records unresolved with the existing data), c) COMPLEX (species names occurring in multiple BINs), and d) SHARE (barcodes shared between species). A total of 83,712 specimen records corresponding to 7,576 species were reviewed and 39% of the species were tagged (7% MIS-ID, 17% AMBIG, 14% COMPLEX, and 1% SHARE). High percentages (>50%) of AMBIG tags were recorded in gastropods, whereas COMPLEX tags dominated in crustaceans and polychaetes. The high proportion of tagged species reflects either flaws in the barcoding workflow (e.g., misidentification, cross-contamination) or taxonomic difficulties (e.g., synonyms, undescribed species). Although data curation is essential for barcode applications, such manual attempts to examine large datasets are unsustainable and automated solutions are extremely desirable.The hackathon was organized with financial support from the European Union COST Action DNAqua-Net (CA 15219 https://dnaqua.net/) in the scope of the 8th International Barcode of Life Conference in Trondheim, Norway on 16 June 2019. DNAqua-Net is acknowledged for the funding provided and the local conference organizers for all the logistical support that ensured a successful event. Tyler Elliot and the rest of the BOLD team are acknowledged for their help with data queries and analytics. The authors also thank the hackathon participants for vibrant discussions during and after the event: Berry van der Hoorn, Katrine Konsghavn, Guy Paz, Mouna Rifi, Malin Strand, Anne Helene Tandberg, Adam Wall, and Endre Willassen. Marcos A. L. Teixeira was supported by a PhD grant from the Portuguese Foundation for Science and Technology (FCT I.P.) co-financed by ESF (SFRH/BD/131527/2017). Financial support granted by FCT to Sofia Duarte (CEECIND/00667/2017) and to Pedro E. Vieira (project NIS-DNA, PTDC/BIA-BMA/29754/2017) is also acknowledged. Sanna Majaneva was financially supported by the Norwegian Taxonomy Initiative (project no. 70184235). The authors thank the five reviewers who provided valuable input into the earlier version of the manuscript

    Coronarin D induces apoptotic cell death and cell cycle arrest in human glioblastoma cell line

    Get PDF
    Glioblastoma (GBM) is the most frequent and highest–grade brain tumor in adults. The prognosis is still poor despite the use of combined therapy involving maximal surgical resection, radiotherapy, and chemotherapy. The development of more efficient drugs without noticeable side effects is urgent. Coronarin D is a diterpene obtained from the rhizome extract of Hedychium coronarium, classified as a labdane with several biological activities, principally anticancer potential. The aim of the present study was to determine the anti–cancer properties of Coronarin D in the glioblastoma cell line and further elucidate the underlying molecular mechanisms. Coronarin D potently suppressed cell viability in glioblastoma U–251 cell line, and also induced G1 arrest by reducing p21 protein and histone H2AX phosphorylation, leading to DNA damage and apoptosis. Further studies showed that Coronarin D increased the production of reactive oxygen species, lead to mitochondrial membrane potential depolarization, and subsequently activated caspases and ERK phosphorylation, major mechanisms involved in apoptosis. To our knowledge, this is the first analysis referring to this compound on the glioma cell line. These findings highlight the antiproliferative activity of Coronarin D against glioblastoma cell line U–251 and provide a basis for further investigation on its antineoplastic activity on brain cancer.This research was funded by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2014/06636–7 and 2016/06137–6), financiadora de Estudos e Projetos FINEP (MCTI/FINEP/MS/SCTIE/DECIT–01/2013–FPXII–BIOPLAT)

    Hydrogen peroxide production regulates the mitochondrial function in insulin resistant muscle cells: Effect of catalase overexpression

    Get PDF
    AbstractThe mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500μM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with β-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and β-oxidation of fatty acids

    Integrating human and ecosystem health through ecosystem services frameworks

    Get PDF
    The pace and scale of environmental change is undermining the conditions for human health. Yet the environment and human health remain poorly integrated within research, policy and practice. The ecosystem services (ES) approach provides a way of promoting integration via the frameworks used to represent relationships between environment and society in simple visual forms. To assess this potential, we undertook a scoping review of ES frameworks and assessed how each represented seven key dimensions, including ecosystem and human health. Of the 84 ES frameworks identified, the majority did not include human health (62%) or include feedback mechanisms between ecosystems and human health (75%). While ecosystem drivers of human health are included in some ES frameworks, more comprehensive frameworks are required to drive forward research and policy on environmental change and human health
    corecore