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Abstract: Glioblastoma (GBM) is the most frequent and highest—grade brain tumor in adults.
The prognosis is still poor despite the use of combined therapy involving maximal surgical resection,
radiotherapy, and chemotherapy. The development of more efficient drugs without noticeable
side effects is urgent. Coronarin D is a diterpene obtained from the rhizome extract of Hedychium
coronarium, classified as a labdane with several biological activities, principally anticancer potential.
The aim of the present study was to determine the anti—cancer properties of Coronarin D in the
glioblastoma cell line and further elucidate the underlying molecular mechanisms. Coronarin D
potently suppressed cell viability in glioblastoma U-251 cell line, and also induced G1 arrest by
reducing p21 protein and histone H2AX phosphorylation, leading to DNA damage and apoptosis.
Further studies showed that Coronarin D increased the production of reactive oxygen species,
lead to mitochondrial membrane potential depolarization, and subsequently activated caspases
and ERK phosphorylation, major mechanisms involved in apoptosis. To our knowledge, this is
the first analysis referring to this compound on the glioma cell line. These findings highlight the
antiproliferative activity of Coronarin D against glioblastoma cell line U-251 and provide a basis for
further investigation on its antineoplastic activity on brain cancer.
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1. Introduction

Comprising over 100 diseases, cancer is characterized by disordered cell growth and tissue
invasion that can spread to other regions of the body, leading to metastasis. It is a multifactorial
heterogeneous disease and one of the major worldwide causes of mortality [1]. Among all types of
cancers, brain tumors are one of the less prevalent, accounting for about 2% of all types of malignant
tumors, but considered one of the most worrying ones [2,3]. As the most frequent (70-75%), gliomas
were originally characterized as lesions originated from glial cells, which play a role of support,
protection, and nourishment for neurons in the central nervous system (CNS) [4]. However, stem-like
cells within the CNS are now thought to be the cells of origin of several primary brain tumor
types, including glioblastomas [5,6]. Gliomas are one of the most fatal tumors, presenting a high
mortality rate, 29-35%, of the CNS tumors in adolescents and young adults [7,8]. Among gliomas,
glioblastomas (GBM) are the most aggressive and frequent subtype [9,10]. GBM is highly invasive
and presents a median survival of only 14.6 months, even after aggressive treatment with surgery,
radiation, and chemotherapy. The difficulties in human GBM therapy are due to the pathological
characteristic and numerous drug-resistance mechanisms. Temozolomide (TMZ) comprises the
standard treatment for glioblastoma, but unlike classic chemotherapeutics, TMZ does not induce
DNA damage or misalignment of segregating chromosomes directly. It is a DNA alkylating agent,
which leads to base mismatches that initiate futile DNA repair cycles; eventually, DNA strands break,
which in turn induces cell death. The addition of TMZ to the standard treatment protocol was hailed
as a major breakthrough in GBM therapy. Despite this, patients” prognosis remains dismal with a
five—year overall survival below 10% [11]. For this reason, more efficient therapeutic approaches are
required for enhancing the treatment effect [12].

One of these approaches is based on cell death induction. There are many cell death morphotypes
described in the literature [13]. Searching for new anticancer agents, investigation into cell death
mechanisms, such as apoptosis, necrosis, necroptosis or other under—explored forms of cell death, is a
significant strategy to afford more selective and efficient drugs. Further, as many clinically—established
drugs are based on natural products, there are still many researches focused on finding new compounds
from natural products [14].

Native from Asia and the Pacific [15], Hedychium coronarium (Zingiberaceae family) is an invasive
species in Brazil [16]. Popularly known as white garland-lily, butterfly lily, napoleon, narcissus,
Olympia, white ginger or “lirio do brejo” (in Brazil), the H. coronarium rhizomes are used as a starch
source [17] and in traditional medicine for treatment of inflammation, diabetes, and rheumatic pain,
among other uses [15]. Among pharmacological evaluations, the ethanolic extract of H. coronarium
rhizomes induces apoptosis on HeLa cells by promoting cell cycle arresting at G1 phase, upregulating
P53, p21, and Bax expression as well as downregulating cyclin D1, cyclin-dependent kinases CDK—4,
CDK-6, and Bcl-2 expression [18]. Moreover, chemical evaluation of these extracts afforded the
isolation of several labdane-like diterpenes with anti-inflammatory action [19,20], antiallergic [21],
antibacterial [22], and cytotoxic effects over A-549— lung cancer, SK-N-SH—- human neuroblastoma,
MCEF-7 breast cancer, and HelLa cervical cancer cell lines [23].

One of these diterpenes, coronarin D, has been reported as a promising antiproliferative and
anti-inflammatory agent. Coronarin D inhibits the f—hexosaminidase release in RBL-2H3 cells [21]
in addition to increasing the in vivo inhibition of the acetic acid-induced vascular permeability in
mice [19]. Further, Coronarin D exhibits antiproliferative, pro—apoptotic, anti-invasive, antiangiogenic,
antiosteoclast, and anti-inflammatory activity by suppressing NF-«B and the gene products regulated
by this pathway of osteoclastogenesis [24]. Recently, Coronarin D has been described as inducing
apoptosis in human hepatocellular carcinoma (HCC) [25] and in human oral cancer (OSCC) [26] through
the c-Jun N—-terminal kinases (JNK) pathway while it has induced reactive oxygen species—mediated
cell death in human nasopharyngeal cancer cells (NPC) through inhibition of p38 mitogen—activated
protein kinase (MAPK) and activation of JNK [27].
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Based on these significant activities, the present study sought to further elucidate the Coronarin D
mechanism of action on cell death of the human tumor cell line U-251 (glioblastoma). As far as we
know, this is the first report concerning the Coronarin D mechanism of action on glioblastoma cancer
cell line.

2. Results

2.1. Isolation and Characterization of Coronarin D

Coronarin D (Figure 1) was obtained from the dichloromethane crude extract of Hedychium
coronarium rhizomes. The rhizomes were collected by Dr. Paulo Matsuo Imamura and identified at
the herbarium of the State University of Campinas (UEC 163701). The identification of Coronarin D
was done by comparison of experimental 'H- and 3C-NMR data (Figure S1 and Table S1) with those
described by Itokawa et al. [28].
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Figure 1. Coronarin D molecular structure, data from [29].
2.2. In Vitro Antiproliferative Activity Assay

Coronarin D presented an interesting antiproliferative activity (Figure 2, Table 1), with U-251
(glioblastoma), 786-0 (kidney), PC-3 (prostate), and OVCAR-3 (ovary) as the most sensitive ones,
and total growth inhibition (TGI) values <50 uM.
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Figure 2. In vitro antiproliferative activity of (a) Coronarin D and (b) doxorubicin hydrochloride
(positive control) after 48 h of treatment. Concentration range: 0.785-785 uM for Coronarin D;

0.043-43.1 uM for doxorubicin hydrochloride.

Human tumor cell lines: U-251 (glioblastoma),
MCEF7 (breast), NCI-ADR/RES (multidrug resistant ovary), 786-0 (kidney), NCI-H460 (lung, non-small

cells tumor), PC=3 (prostate), OVCAR-3 (ovary), HT-29 (colon), K562 (chronic myelogenous leukemia).
Human non-tumor cell line: HaCaT (keratinocyte).

The glioma cell line (U-251) was chosen to continue the in vitro experimental procedures, taking
into account that the treatment for this tumor type is still scarce and requires alternative therapies, as
previously mentioned. Considering the TGI value, the concentrations of 2.5, 5, and 10 uM were chosen
to proceed with the cell cycle; concentrations of 10, 20, and 40 uM were chosen for the flow cytometry
and 40 uM for the Western blot assay.
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Table 1. Antiproliferative effect of Coronarin D and doxorubicin hydrochloride expressed as the
concentration required for total growth inhibition (TGI, uM) after 48 h of exposition.

Coronarin D

Doxorubicin Hydrochloride

Cell Lines TGI (uM) TGI (uM)
U-251 18.6 0.5 24404
MCEF7 105.0 + 5.1 11.6+ 18

NCI-ADR/RES  550.1 + 79.9 ~431*
786-0 364 + 42 17.8 + 3.4

NCI-H460 640.8 + 11.3 267 +18
PC-3 17.1 + 0.6 214442

OVCAR-3 416+21 192419
HT-29 534.1 + 31.8 ~43.1 %
K562 56.6 + 2.4 10.0 + 1.2
HaCaT 129+ 17 11+0.1

TGI (concentration required for total growth inhibition of each cell line) values expressed as mean =+ standard error of
two independent experiments. *: TGI values higher than the highest experimental concentration. Human tumor cell
lines: U-251 (glioblastoma), MCF7 (breast), NCI~ADR/RES (multidrug resistant ovary), 786-0 (kidney), NCI-H460
(lung, non-small cells tumor), PC-3 (prostate), OVCAR-3 (ovary), HT-29 (colon), K562 (chronic myelogenous

leukemia). Human non-tumor cell line: HaCaT (keratinocyte).

2.3. Cell Cycle Assay

Comparing to untreated U-251 cells, Coronarin D induced cell cycle arrest at G1 phase, in a
concentration-dependent way and independent of time exposure (Figure 3). The increasing Gl
subpopulation was concomitant with a significant reduction on cell subpopulations at S phase
(Figure 3a) and G2/M phase (Figure 3a,b), proportionally to Coronarin D concentration. Figure 3c,d
reveal the histogram of the most representative concentration (10 uM).
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Figure 3. Quantification of U-251 in phases G1, S, and G2 after (a) 24 h and (b) 48 h of treatment
with vehicle (DMSO) and Coronarin D at concentrations of 2.5, 5, and 10 M. Histograms of the most
representative concentration (10 uM) are presented at (c) 24 h and (d) 48 h. The values were expressed

as mean + standard deviation of two replicates of the same experiment. * p < 0.05; ** p < 0.01 and

***p < 0.001. (Two-way ANOVA: Bonferroni).
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2.4. Phosphatidylserine (PS) Externalization Assay

According to Figure 4, after 12 h of U-251 exposition, the concentrations 20 and 40 uM reduced
cell viability and increased the number of cells labeled with annexin V-PE (17.88% and 25.88%,
consecutively) and doubly labeled with annexin V-PE/7-AAD (7.30 and 13.00%, consecutively).
After 24 h of treatment with Coronarin D at 10, 20, and 40 uM, the cell viability was dramatically
reduced in comparison with the control (63.4%, 52.00%, 28.88%) and there was an increase of cells labeled
with annexin V-PE (26.32%, 23.18%, 22.75%) and doubly labeled with annexin V-PE/7-AAD (9.50%,
19.42%, 42.00%, consecutively). Coronarin D induces cell death through a concentration—-dependent
effect—the higher the concentration, the more advanced cell death process. The population of
non-viable cells labeled only by 7-AAD did not increase significantly, indicating that the treatments
with Coronarin D induced cell death characterized by phosphatidylserine exposure, being a type of
programmed cell death.
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Figure 4. Percentage of U-251 cells stained with annexin V-PE and 7-AAD after (a) 12 h and (b) 24 h
of treatment with vehicle (DMSO) and Coronarin D at 10, 20, and 40 uM concentrations. Dotplots are
presented at (c) 12 h and (d) 24 h. The values are expressed as mean + standard deviation of two
replicates of the same experiment. * p < 0.05 and *** p < 0.001. (Two-way ANOVA: Bonferroni).

2.5. Detection of Activated Caspases

The results obtained for caspases corroborate with annexin assay. The highest concentrations
(20 and 40 uM) led to caspases activation without cell membrane disruption in 14.3% and 12.5% of
cells, respectively. The percentage of cells doubly labeled, which means, caspases activation with cell
membrane disruption increased for 20 uM concentration and this percentage was even higher for
40 uM concentration (49.7%) (Figure 5).

2.6. Mitochondrial Membrane Potential Assay

The induction of death by intrinsic apoptosis is usually triggered by some stimulus or stress
that leads to a mitochondrial response and may result in the depolarization of its outer membrane.
Untreated cells showed high intracellular fluorescence intensity indicating that mitochondria were able
to sequester a greater amount of rhodamine 123, whereas in cells treated with Coronarin D at 20 pM and
40 uM for 6,9, and 12 h, there was an intracellular fluorescence signal reduction (Figure 6a—c), being more
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intense at 12 h of treatment. This result suggests that Coronarin D induces loss of mitochondrial
membrane preceding or concomitant with caspase activation and phosphatidylserine externalization.
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Figure 5. (a) Percentage of U-251 cells stained with SR-VAD-FMK and 7-AAD after 24 h of treatment
with vehicle (DMSO) and Coronarin D at 10, 20, and 40 uM concentrations. Dotplots are presented at
(b). The values are expressed as mean + standard deviation of two replicates of the same experiment.
*p <0.05,** p <0.01, and *** p < 0.001. (Two-way ANOVA: Bonferroni).
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intensity after (a) 6 h, (b) 9 h, and (c) 12 h of treatment with vehicle (DMSO) and Coronarin D at 20 uM
and 40 pM. The values were expressed as mean + standard deviation of two replicates of the same
experiment. ** p < 0.01 and *** p < 0.001. (ANOVA Two-way: Bonferroni).
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2.7. Measurement of Hydrogen Peroxide (H,0;) Generation

The induction of death by intrinsic apoptosis is usually triggered by a stress that leads to
depolarization of the outer membrane of mitochondria and the release of reactive oxygen species (ROS),
more specifically hydrogen peroxide. This was measured by examining the fluorescence intensity
of DCEF. The intensity of fluorescence is proportional to intracellular hydrogen peroxide levels [30].
Data suggest that over 80% of the cell population presented high fluorescence intensity (DCF +) after
90 min of treatment with Coronarin D, even at the lowest concentration (10 uM), indicating the presence
of HyO, on these cells (Figure 7).
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Figure 7. (a) Percentage of cells with high (DCF +) and low (DCF -) 2,7-dichlorofluorescein intracellular
fluorescence intensity after 90 min of treatment with vehicle (DMSO) and Coronarin D at 10, 20,
and 40 uM. Histograms are presented at (b). The values are expressed as mean + standard deviation of
two replicates of the same experiment. *** p < 0.001. (ANOVA Two-way: Bonferroni).

2.8. Western Blotting Assay

In order to confirm the cell signaling pathway of Coronarin D, some proteins involved with
proliferation, cell death and cell cycle were evaluated after 24 h of treatment. Figure 8 revealed a
decrease of total ERK protein, cleavage of poly (ADP-ribose) polymerases (PARP) and cleavage of
caspases 3, 7, and 9 as well as increase of phosphorylation of ERK and p—-H2AX histone. The p21
protein, related with cell cycle arrest, was also overexpressed. Of note, Coronarin D activated caspases 7
and 9, as well as PARP and p21 in a more intense way compared with the chemotherapeutic drug TMZ.
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Figure 8. Effects of Coronarin D and temozolomide (TMZ) on expression of caspase 9, caspase 7,
cleaved—caspase 3, poly (ADP-ribose) polymerase (PARP), p—-H2AX, ERK, and p-ERK proteins in
glioblastoma cell line (U-251). The a—tubulin was used as a positive control. The values for caspase
7, caspase 9, PARP, p-H2AX, p-ERK, and p21 were expressed as mean + standard deviation of
three replicates of the same experiment. Values for cleaved—caspase 3 and ERK were obtained from
one experiment.
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3. Discussion

Since Coronarin D has shown several biological activities as mentioned before and presents a
potential clinical application in cancer therapy;, it is important to have a clear understanding of its
mechanism of action. In this study, we showed that most of the tumor cell lines evaluated were sensitive
to the treatment with Coronarin D and, among them, U-251 (glioblastoma) was the cell line chosen to
continue the evaluation of the mechanism of action of this compound. We demonstrated that Coronarin
D induces cell cycle arrest at G1 phase and apoptosis of glioblastoma cells in a concentration-time
dependent manner.

Many natural products can suppress proliferation by arresting cells at phases in the cell cycle [25].
The p21 is a small protein with 165 amino acids and belongs to the CIP/Kip family of CDK inhibitors.
The p21 can arrest the cell cycle progression in G1/S and G2/M transitions by inhibiting CDK4,6/cyclin-D
and CDK2/cyclin-E, respectively [31,32]. In addition, some studies have shown that H2AX is required
for p21-induced cell cycle arrest after replication stalling [33]. The results herein presented indicate
that Coronarin D inhibits glioblastoma (U-251) cell growth by inducing cell cycle arrest at G1 phase
after increasing expression of p21, likely mediated by the phosphorylation of H2AX.

Coronarin D was also able to trigger cell death with the activation of caspases 9, 3, and 7
and phosphatidylserine exposure, characteristics of apoptosis, and with further rupture of the cell
membrane [13]. There was a gradual and time-dependent reduction of the mitochondrial membrane
potential (MMP) in U-251 cells treated with Coronarin D, which is a feature of the intrinsic apoptotic
pathway that occurs in response to various intracellular stress conditions centered on mitochondria [34].
The ROS production after the cell treatment with Coronarin D suggests that it can act as a second
messenger, signaling to the activation of the apoptotic process, since this can activate effector caspases.
In addition, ROS can lead to DNA damage that, in turn, activates the p21 pathway and results in cell
cycle arrest [35].

Coronarin D led to an increase in the expression of protein kinase ERK, as well as PARP cleavage.
ERK is part of the MAPK family and, when activated, can mediate mechanisms of cell proliferation
and apoptosis [36,37]. Some studies have reported that the activation of ERK could be a result of DNA
damage that subsequently leads to cell cycle arrest and apoptosis [38,39]. In addition, it is known that
intracellular ROS lead to the activation of ERK and subsequent apoptosis [40-43]. Poly (ADP-ribose)
polymerases (PARPs) are a family of enzymes involved in cellular homeostasis, including DNA
transcription, cell-cycle regulation, and DNA repair [44]. This protein is really relevant in the apoptosis
pathway, because it has a positive regulation in tumors and when it is inactivated leads to the cleavage
of caspase 3 that is involved with the apoptosis process. Studies describe that some natural products
are responsible for cleaving PARP as well as activating the caspase cascade as a mechanism of action
on the induction of apoptosis [45,46]. Relating all these data reported we can suggest that Coronarin D
could induce apoptosis involving ROS generation and ERK activation in U-251 cell line through an
intrinsic and caspase-dependent pathway.

It has been reported in the literature that Coronarin D has pro—apoptotic potential, including
potentiation of PARP cleavage and a reduction in the expression of anti-apoptotic gene products, such as
apoptosis protein—-1, TRAF-2 cellular inhibitory proteins, surviving, and Bcl-2 [24]. Consistent with
our findings it has been shown that Coronarin D triggers apoptosis by activating caspase-dependent
proteins and altering the expression of Bcl-2, Bcl—xL, and Bak in human hepatoma cell lines [25].
Moreover, Dimas et al. and Mahaira et al. demonstrated that compounds that contain labdane-type
diterpenes triggered apoptosis in human colon cancer cells and myeloid leukemia cells [47,48].

The results obtained propose that Coronarin D elevates the generation of ROS (H;05),
which promotes phosphorylation of H2AX and consequently damage to the DNA. In addition,
an increase in the expression of p21 leads cell cycle arrest at the check point between G1 and S.
ROS generation also increases ERK phosphorylation and loss of mitochondrial membrane potential
that allows the release of cytochrome c (not evaluated in this work), and consequently the cleavage of
caspases (9, 3, and 7) and PARP protein. The caspase activation, in turn, leads cell to death through the
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mechanism of intrinsic apoptosis. In conclusion, as far as we know, this is the first study to elucidate
the mechanism of action of Coronarin D in glioblastoma cell line and the results obtained highlight
Coronarin D as a promising anticancer compound in Figure 9.

Coronarin D
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Figure 9. Overview of proposed mechanism of action by Coronarin D in U-251 glioblastoma cell line.

4. Materials and Methods

4.1. Chemicals and Equipments

Column chromatography on silica gel and thin layer chromatography (TLC) were obtained
from Merck (Darmstad, Hesse, Germany). Culture medium RPMI 1640, fetal bovine serum,
and Hank’s balanced salt solution (HBSS) were obtained from Gibco® (Gaithersburg, MD, USA).
Penicillin/streptomycin (1000 U/mL:1000 ug/mL) was purchased from LGC Biotechnology (Cotia,
SP, BRA) and trypsin—-EDTA 0.25% from Vitrocell® (Campinas, SP, BRA). Sulforhodamine B (SRB),
trizma base, trichloroacetic acid (TCA), DCFH-DA, and Rhodamine-123 dyes were obtained from
Sigma-Aldrich® (Allentown, PA, USA). Doxorubicin hydrochloride was obtained from Eurofarma
(Jurubatuba, SP, BRA). Temozolomide (TMZ) was acquired from Sigma-Aldrich. Dimethylsulfoxide
(DMSO), silica gel, and dichloromethane were supplied by Merck (Darmstad, Hesse, Germany).
Guava Cell Cycle®, Guava Nexin Reagent®, and Guava Multicaspase Kit® were purchased
from Millipore® (Burlington, MA, USA). The nitrocellulose membranes were obtained from
Hybond-C™Extra, Amersham Biosciences (Piscataway, NJ, USA). Anti-caspase 7, anti-p—-H2-AX
histone (Ser139), a—tubulin, anti—caspase 9, anti-p44/42 MAPK (ERK1/2), and anti-P21 were obtained
from Cell Signaling and Bradford reagent was purchase from Bio—Rad Hybond—-C™ (Hercules, CA,
USA). The equipments used were rotary evaporator Buchi-Merck (Darmstad, Hesse, Germany),
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microplate reader (Molecular Devices®, model versaMax), and flow cytometer Guava EasyCyte Mini
Flow Cytometry System (Millipore®).

4.2. Isolation of Coronarin D Obtained from Hedychium Coronarium

The rhizomes of Hedychium coronarium were collected in January 2011 in the city of Embu,
Sao Paulo, Brazil. Dried-milled rhizomes (480 g) were extracted with dichloromethane (4 L) by static
maceration (7 days) at room temperature followed by filtration. The plant residues were re—extracted
twice more following the same procedure. After fluidic extract grouping and solvent evaporation
under a vacuum, the final crude extract (32.5 g) was purified by column chromatography on silica gel
using hexane and hexane/ethyl acetate mixtures (1%, 2%, 5%, 10%, 20%, 50%) as eluent. Coronarin D
was isolated after successive column chromatography from fractions obtained by 20% and 50% eluents.
The complete identification of Coronarin D was done through experimental spectral data (‘H- and
13C-NMR) in comparison to those described in the literature [28].

4.3. In Vitro Anticancer Activity Assay

4.3.1. Cell Culture

The tumor cell lines U-251 (glioblastoma), MCF?7 (breast), NCI/ADR-RES (resistant ovary), 7860
(kidney), NCI-H460 (lung), PC-3 (prostate), OVCAR-3 (ovary), HT-29 (colon), and K-562 (leukemia)
were kindly provided from the National Cancer Institute at Frederick, Maryland, USA. The non-tumor
cell line HaCaT (keratinocytes) was kindly provided by FOP/Unicamp. Cells were cultured in complete
medium (RPMI-1640) supplemented with 5% heat fetal bovine serum and 1% penicillin/streptomycin
at 37 °C with 5% COs,.

4.3.2. Antiproliferative Activity

Antiproliferative activity was assessed by the sulforhodamine B (SRB) colorimetric assay as
previously reported [30]. First, the stock solution of Coronarin D (0.3 mM) was prepared aseptically
using DMSO followed by serial dilution in complete medium. The cells were seeded in 96-well plates
(3 x 10* cells/mL, 100 uL/well), incubated for 24 h and treated with Coronarin D at final concentrations
of 0.79, 7.9, 78.5, and 785.0 uM (100 uL/well), in triplicate, and then incubated for 48 h at 37 °C in
5% CO;,. A second plate, named TO, was prepared to infer the absorbance value of untreated cells
at the sample addition moment. The antineoplastic agent doxorubicin hydrochloride was used as a
positive control, at final concentrations of 0.0431, 0.431, 4.31, and 43.1 uM (100 pL/well), in triplicate.
The final concentration of DMSO (<0.25%) did not affect cell viability [46]. Subsequently, the cells were
fixed with 50% trichloroacetic acid and stained with SRB protein dye (0.4%). Determination of protein
content was performed using a microplate reader (Molecular Devices®, VersaMax model) at 540 nm.
Using the absorbance values, the cell growth (%) for each cell line, at each sample concentration,
was calculated considering at 100% of cell growth the difference between the absorbances of untreated
cells after 48 h incubation (T7) and at the sample addition moment (Ty). The curve cell growth vs.
sample concentration was plotted and the effective concentration TGI (concentration required for total
cell growth inhibition) was calculated by sigmoidal regression using the Origin 8.0 software (OriginLab
Corporation, Northampton, MA, USA).

4.4. Cell Cycle Analysis

This experiment was done using Guava® Cell Cycle reagent, following the fabricant’s instructions.
Briefly, U-251 cells (3 x 10* cells/well) in 12-well plates with complete medium were incubated at
37 °C with 5% CO; for 24 h. Then, the complete medium was replaced by RPMI medium without fetal
bovine serum (FBS) for cell cycle synchronization and cells were incubated for another 24 h. After that,
the cells were treated with Coronarin D (2.5, 5, and 10 uM) during the 24 h. The cells were harvested,
collected, centrifuged (5 min, 2500 rpm), and the supernatant discarded. After fixation with 70% cold



Molecules 2019, 24, 4498 12 of 16

ethanol (24 h, 4 °C), each cell suspention was centrifuged and washed with PBS, the supernatant was
discarded, and then the Guava Cell Cycle reagent (200 pL/cell suspension) was added. After 20 min
at room temperature in the dark, each cell suspension was analyzed (5000 events/replicate) by flow
cytometry. Using the Guava Cell cycle® software (Austin, TX, USA), the subpopulations at G1, S, and
G2/M phases of the cell cycle were quantified in percentage. The analyses were done in biological
triplicate of two experiments. Statistical evaluation was done by two-way ANOVA followed by
Bonferroni test using GraphPad Prism.

4.5. Phosphatidylserine (PS) Externalization Assay

This experiment was done using Guava® Nexin Reagent, following the fabricant’s instructions.
Briefly, U-251 cells (3 x 10* cells/well) in 12-well plates with complete medium were incubated at
37 °C with 5% CO, for 24 h. Then cells were treated with Coronarin D (10, 20, and 40 uM) for 12
and 24 h. After trypsinization and washing, each cell suspension was stained with 100 uL of Guava
Nexin Reagent that consists of annexin-V conjugated with phycoeritrin (PE) and 7-aminoactinomycin
D (7-AAD) for 20 min at room temperature in the dark and then analyzed (2000 events/replicate)
by flow cytometry. Using the Guava Nexin® software (Austin, TX, USA), each cell population was
registered and quantified at four cell subpopulations named as viable cells ((-) annexin—V/PE (-)
7-AAD); only PS externalization ((+) annexin-V/PE (-) 7-AAD); both PS externalization and membrane
permeabilization ((+) annexin-V/PE (+) 7-AAD); only membrane permeabilization ((-) annexin—-V/PE
(+) 7-AAD). The analyses were done in biological triplicate of two experiments. Statistical evaluation
was done by two-way ANOVA followed by Bonferroni test using GraphPad Prism software.

4.6. Detection of Activated Multicaspases

This experiment was done using Guava® Caspase Kit, following the fabricant’s instructions.
Briefly, U-251 cells (3 x 10* cells/well) in 12-well plates with complete medium were incubated at
37 °C with 5% CO, for 24 h. Then cells were treated with Coronarin D (10, 20, and 40 uM) for 12 and
24 h. After that, the caspase inhibitor probe (10 puL/well) was added. It comprises a sulforhodamine
derivative of valylalanylaspartic acid fluoromethyl ketone (SR-VAD-FMK). After incubation (1 h in
the dark) and medium discarding, the cells were washed, trypsinized, and centrifuged. Each resulting
cell pellet was resuspended in wash buffer (100 uL/pellet) and co—stained with the caspase-7-AAD
working solution (200 pL/pellet) After 10 min at room temperature in the dark, cells were analyzed
(2000 events/replicate) by flow cytometry. Using the Guava® MultiCaspase software (Austin, TX,
USA), each cell population was registered and quantified at four cell subpopulations named as viable
cells (SR-VAD-FMK (-) and 7-AAD (-)); only activated caspases (SR-VAD-FMK (+) and 7-AAD (-));
both activated caspases and membrane permeabilization (SR-VAD-FMK (+) and 7-AAD (+)) and
only membrane permeabilization (SR-VAD-FMK (-) and 7-AAD (+)). The analyses were done in
biological triplicate of two experiments. Statistical evaluation was done by Two-way ANOVA followed
by Bonferroni test using GraphPad Prism software.

4.7. Mitochondrial Membrane Potential Assay

Briefly, U-251 cells (3 x 10* cells/well) in 12-well plates with complete medium were incubated
at 37 °C with 5% CO, for 24 h. Then cells were treated with Coronarin D (20 and 40 uM) for 6 h.
Rhodamine-123 solution (1 pg/mL in medium RPMI 1640 plus 10% FBS, 1 mL/well) was added
after medium remoting. After 15 min, the medium was aspirated and all cells were washed with
RPMI 1640 plus 10% FBS (1 mL/well, twice), trypsinized, and collected. The cells were analyzed
(5000 events/replicate) by flow cytometry. Using the Guava® Express Pro software (Austin, TX, USA)
each cell population was registered and quantified at two cell subpopulations named as viable cells
(Rhodamine—-123(+)); altered mitochondrial membrane potential (Rhodamine-123(-)). The analyses
were done in biological duplicate of one experiment. Statistical evaluation was done by one-way
ANOVA followed by Tukey’s test using GraphPad Prism software.
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4.8. Measurement of Hydrogen Peroxide (H,O,) Generation

DCFH-DA (Dichlorodihydro—fluorescein diacetate) is a stable, fluorogenic, and non—polar
compound, which can readily diffuse into cells and get deacetylated by intracellular esterases to
a non—fluorescent 2,7-dichlorodihydrofluorescein (DCFH) which is later oxidized by intracellular
hydrogen peroxide into highly fluorescent 2,7-dichlorofluorescein (DCF). The intensity of fluorescence
is proportional to intracellular hydrogen peroxide levels [30].

Briefly, U-251 cells (3 x 10* cells/well) in 12-well plates with complete medium were incubated at
37 °C with 5% CO; for 24 h. After medium removing, the cells were washed with Hank’s buffered salt
solution (HBSS, 1 mL/well), treated with DCFH-DA solution (10 uM in HBSS, 1 mL/well), followed by
30 min incubation in the dark. After probe removing and cell washing with HBSS bulffer, cells were
treated with Coronarin D (20 and 40 uM) for 90 min. After trypsinization, cell suspension in HSBB was
analyzed (5000 events/replicate) by flow cytometry. Using the Guava® Express Pro software, each cell
population was registered and quantified at two cell subpopulations named as viable cells (DCF(-))
and increased intracellular hydrogen peroxide level (DCF(+)). The analyses were done in biological
duplicate of one experiment. Statistical evaluation was done by one-way ANOVA followed by Tukey’s
test using GraphPad Prism software.

4.9. Western Blotting Assay

U-251 cells (1 x 10° cells/well) in 6-well plates with complete medium were incubated at
37 °C with 5% CO; for 24 h. Then cells were treated with a negative control (DMSO), Coronarin
D (40 uM), and TMZ (used as positive control) for 24 h. TMZ was dissolved in DMSO to prepare
a stock concentration of 1000 mM, which was further diluted in cell culture medium to working
concentrations. The cells were exposed at 3 X ICsg concentration values of TMZ for 24 h in DMEM
(0.5% FBS) [49]. After washing with PBS (1 mL/well, twice), cells were lysed with lysis buffer
(70 uL/well); Tris 50 mM pH 7.6-8, NaCl 150 mM, EDTA 5 mM, NazVO; 1 mM, NaF 10 mM,
Na pyrophosphate 10 mM, and 1% NP—40 and supplemented with a cocktail of inhibitors (DTT-
Dithiothreitol, leupeptin hemisulfate, aprotinin, PSMF- Phenylmethylsulfonyl fluoride, and EDTA) for
1 h, followed by centrifugation (4 °C, 15 min, 13,000 rpm). The protein concentration was determined
by Bradford reagent [50]. All samples (untreated and Coronarin p—treated cells) were total cellular
protein (20 ug protein/sample) and separated by electrophoresis on 10% gradient gels in SDS-PAGE
and blotted onto nitrocellulose membranes by electroblotting in transfer buffer (Trizma base, glycine,
distilled water, and methanol). Then the membranes were blocked with skimmed milk powder
solution at 5% diluted in tris—buffered saline and Tween 20 (TBST) and incubated overnight with
the primary antibodies diluted in bovine serum albumin (BSA) solution (5% in TBST). The primary
antibodies were anti—caspase 7, anti—cleaved caspase 3, anti—caspase 9, anti-cleaved PARP, anti-P21
(dilution 1:1000), anti-p44/42 MAPK (ERK1/2), and anti-p—H2-AX histone (Ser139) (dilution 1:500).
The antibody a—tubulin was used as the control. After this, the membranes were incubated with
peroxidase-conjugated secondary antibody anti-mouse or anti-rabbit (1:5000) and also diluted in
BSA solution (5% in TBST). The proteins levels were detected using the enhanced chemiluminescence
(ECL-GE) method. The detection of the chemiluminescent signal was performed in the Photo Quant
LAS 4000 mini (GE) photo documentation system and the bands were analyzed and quantified using
Image J software (obtained from imagej.nih.gov/ij/downloady).

4.10. Statistical Analysis

The data are provided as the final result with mean + standard error. For the statistical analysis of
the experiments two—way analysis of variance (ANOVA) was used. All analyses were performed with
significance level at p < 0.05, using GraphPad Prism version 8.0.0 for Windows, GraphPad Software
(San Diego, CA, USA).
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Supplementary Materials: The following are available online. Structural identification of Coronarin D was
assessed by 'H-NMR and '3C-NMR (Figures S1 and S2). Data obtained from 3C-NMR are presented at Table S1.
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