2,325 research outputs found
Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO3 thin film
Transition metal oxide thin films show versatile electrical, magnetic, and
thermal properties which can be tailored by deliberately introducing
macroscopic grain boundaries via polycrystalline solids. In this study, we
focus on the modification of the magnetic and thermal transport properties by
fabricating single- and polycrystalline epitaxial SrRuO3 thin films using
pulsed laser epitaxy. Using epitaxial stabilization technique with atomically
flat polycrystalline SrTiO3 substrate, epitaxial polycrystalline SrRuO3 thin
film with crystalline quality of each grain comparable to that of
single-crystalline counterpart is realized. In particular, alleviated
compressive strain near the grain boundaries due to coalescence is evidenced
structurally, which induced enhancement of ferromagnetic ordering of the
polycrystalline epitaxial thin film. The structural variations associated with
the grain boundaries further reduce the thermal conductivity without
deteriorating the electronic transport, and lead to enhanced thermoelectric
efficiency in the epitaxial polycrystalline thin films, compared with their
single-crystalline counterpart.Comment: 24 pages, 5 figure
A single origin of the photosynthetic organelle in different Paulinella lineages
<p>Abstract</p> <p>Background</p> <p>Gaining the ability to photosynthesize was a key event in eukaryotic evolution because algae and plants form the base of the food chain on our planet. The eukaryotic machines of photosynthesis are plastids (e.g., chloroplast in plants) that evolved from cyanobacteria through primary endosymbiosis. Our knowledge of plastid evolution, however, remains limited because the primary endosymbiosis occurred more than a billion years ago. In this context, the thecate "green amoeba" <it>Paulinella chromatophora </it>is remarkable because it very recently (i.e., minimum age of ≈ 60 million years ago) acquired a photosynthetic organelle (termed a "chromatophore"; i.e., plastid) <it>via </it>an independent primary endosymbiosis involving a <it>Prochlorococcus </it>or <it>Synechococcus</it>-like cyanobacterium. All data regarding <it>P. chromatophora </it>stem from a single isolate from Germany (strain M0880/a). Here we brought into culture a novel photosynthetic <it>Paulinella </it>strain (FK01) and generated molecular sequence data from these cells and from four different cell samples, all isolated from freshwater habitats in Japan. Our study had two aims. The first was to compare and contrast cell ultrastructure of the M0880/a and FK01 strains using scanning electron microscopy. The second was to assess the phylogenetic diversity of photosynthetic <it>Paulinella </it>to test the hypothesis they share a vertically inherited plastid that originated in their common ancestor.</p> <p>Results</p> <p>Comparative morphological analyses show that <it>Paulinella </it>FK01 cells are smaller than M0880/a and differ with respect to the number of scales per column. There are more distinctive, multiple fine pores on the external surface of FK01 than in M0880/a. Molecular phylogenetic analyses using multiple gene markers demonstrate these strains are genetically distinct and likely comprise separate species. The well-supported monophyly of the <it>Paulinella chromatophora </it>strains analyzed here using plastid-encoded 16S rRNA suggests strongly that they all share a common photosynthetic ancestor. The strain M0880/a is most closely related to Japanese isolates (Kanazawa-1, -2, and Kaga), whereas FK01 groups closely with a Kawaguchi isolate.</p> <p>Conclusion</p> <p>Our results indicate that <it>Paulinella chromatophora </it>comprises at least two distinct evolutionary lineages and likely encompasses a broader taxonomic diversity than previously thought. The finding of a single plastid origin for both lineages shows these taxa to be valuable models for studying post-endosymbiotic cell and genome evolution.</p
Meeting the requirements to deploy cloud RAN over optical networks
Radio access network (RAN) cost savings are expected in future cloud RAN (C-RAN). In contrast to traditional distributed RAN architectures, in C-RAN, remote radio heads (RRHs) from different sites can share baseband processing resources from virtualized baseband unit pools placed in a few central locations (COs). Due to the stringent requirements of the several interfaces needed in C-RAN, optical networks have been proposed to support C-RAN. One of the key elements that needs to be considered are optical transponders. Specifically, sliceable bandwidth-variable transponders (SBVTs) have recently shown many advantages for core optical transport networks. In this paper, we study the connectivity requirements of C-RAN applications and conclude that dynamicity, fine granularity, and elasticity are needed. However, there is no SBVT implementation that supports those requirements, and thus, we propose and assess an SBVT architecture based on dynamic optical arbitrary generation/measurement. We consider different long-term evolution-advanced configurations and study the impact of the centralization level in terms of the capital expense and operating expense. An optimization problem is modeled to decide which COs should be equipped and which equipment, including transponders, needs to be installed. The results show noticeable cost savings from installing the proposed SBVTs compared to installing fixed transponders. Finally, compared to the maximum centralization level, remarkable cost savings are shown when a lower level of centralization is considered.Peer ReviewedPostprint (author's final draft
The Climate-system Historical Forecast Project: providing open access to seasonal forecast ensembles from centers around the globe
Fil: Tompkins, Adrian M.. The Abdus Salam; ItaliaFil: Ortiz de Zarate, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Centre National de la Recherche Scientifique; FranciaFil: Saurral, Ramiro Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Centre National de la Recherche Scientifique; FranciaFil: Vera, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Centre National de la Recherche Scientifique; FranciaFil: Saulo, Andrea Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; ArgentinaFil: Merryfield, William J.. Canadian Centre for Climate Modelling and Analysis; CanadáFil: Sigmond, Michael. Canadian Centre for Climate Modelling and Analysis; CanadáFil: Lee, Woo Sung. Canadian Centre for Climate Modelling and Analysis; CanadáFil: Baehr, Johanna. Universitat Hamburg; AlemaniaFil: Braun, Alain. Météo-France; FranciaFil: Amy Butler. National Ocean And Atmospheric Administration; Estados UnidosFil: Déqué, Michel. Météo-France; FranciaFil: Doblas Reyes, Francisco J.. Institució Catalana de Recerca i Estudis Avancats; España. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; EspañaFil: Gordon, Margaret. Met Office; Reino UnidoFil: Scaife, Adam A.. University of Exeter; Reino UnidoFil: Yukiko Imada. Japan Meteorological Agency. Meteorological Research Institute. Climate Research Department; JapónFil: Masayoshi Ishii. Japan Meteorological Agency. Meteorological Research Institute. Climate Research Department; JapónFil: Tomoaki Ose. Japan Meteorological Agency. Meteorological Research Institute. Climate Research Department; JapónFil: Kirtman, Ben. University of Miami; Estados UnidosFil: Kumar, Arun. National Ocean And Atmospheric Administration; Estados UnidosFil: Müller, Wolfgang A.. Max-Planck-Institut für Meteorologie; AlemaniaFil: Pirani, Anna. Université Paris-Saclay; FranciaFil: Stockdale, Tim. European Centre for Medium-Range Weather; Reino UnidoFil: Rixen, Michel. World Meteorological Organization. World Climate Research Programme; SuizaFil: Yasuda, Tamaki. Japan Meteorological Agency. Climate Prediction Division; Japó
Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO3 thin film
Transition metal oxide thin films show versatile electrical, magnetic, and
thermal properties which can be tailored by deliberately introducing
macroscopic grain boundaries via polycrystalline solids. In this study, we
focus on the modification of the magnetic and thermal transport properties by
fabricating single- and polycrystalline epitaxial SrRuO3 thin films using
pulsed laser epitaxy. Using epitaxial stabilization technique with atomically
flat polycrystalline SrTiO3 substrate, epitaxial polycrystalline SrRuO3 thin
film with crystalline quality of each grain comparable to that of
single-crystalline counterpart is realized. In particular, alleviated
compressive strain near the grain boundaries due to coalescence is evidenced
structurally, which induced enhancement of ferromagnetic ordering of the
polycrystalline epitaxial thin film. The structural variations associated with
the grain boundaries further reduce the thermal conductivity without
deteriorating the electronic transport, and lead to enhanced thermoelectric
efficiency in the epitaxial polycrystalline thin films, compared with their
single-crystalline counterpart.Comment: 24 pages, 5 figure
Author Correction: Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses.
In the version of this article initially published, the labels (50 Å) above the scale bars in Fig. 1b were incorrect. The correct size is 50 nm. The error has been corrected in the HTML and PDF versions of the article
Sequence-Signature Optimization Enables Improved Identification of Human HV6-1-Derived Class Antibodies That Neutralize Diverse Influenza A Viruses
Sequence signatures of multidonor broadly neutralizing influenza antibodies can be used to quantify the prevalence of B cells with virus-neutralizing potential to accelerate development of broadly protective vaccine strategies. Antibodies of the same class share similar recognition modes and developmental pathways, and several antibody classes have been identified that neutralize diverse group 1- and group 2-influenza A viruses and have been observed in multiple human donors. One such multidonor antibody class, the HV6-1-derived class, targets the stem region of hemagglutinin with extraordinary neutralization breadth. Here, we use an iterative process to combine informatics, biochemical, and structural analyses to delineate an improved sequence signature for HV6-1-class antibodies. Based on sequence and structure analyses of known HV6-1 class antibodies, we derived a more inclusive signature (version 1), which we used to search for matching B-cell transcripts from published next-generation sequencing datasets of influenza vaccination studies. We expressed selected antibodies, evaluated their function, and identified amino acid-level requirements from which to refine the sequence signature (version 2). The cryo-electron microscopy structure for one of the signature-identified antibodies in complex with hemagglutinin confirmed motif recognition to be similar to known HV6-1-class members, MEDI8852 and 56.a.09, despite differences in recognition-loop length. Threading indicated the refined signature to have increased accuracy, and signature-identified heavy chains, when paired with the light chain of MEDI8852, showed neutralization comparable to the most potent members of the class. Incorporating sequences of additional class members thus enables an improved sequence signature for HV6-1-class antibodies, which can identify class members with increased accuracy
Introductory programming: a systematic literature review
As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming.
This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research
- …