97 research outputs found

    Refining the interpretation of lacustrine carbonate isotope records: Implications of a mineralogy-specific Lake Van case study

    Get PDF
    Oxygen and carbon isotope (δ18O and δ13C) data from bulk carbonates are widely applied proxies for temperature, the precipitation/evaporation ratio and productivity in lacustrine palaeohydrology and palaeoclimatology. In case of the terminal and alkaline Lake Van, however, previous studies have shown that bulk oxygen isotope compositions are in disagreement with other proxies when interpreted in a conventional manner. Similarly, the reports on the nature and the timing and site of carbonate precipitation in Lake Van are inconsistent. This study provides evidence on the mineralogy (X-ray powder diffraction analysis, scanning electron microscope imaging, confocal Raman microscopy, electron microprobe analysis) and isotope composition (δ18O and δ13C) of non-skeletal carbonate minerals in a Lake Van sedimentary profile spanning the last ca. 150 kyr. Carbonate phases present in the sediment include aragonite, low-Mg calcite, and calcian dolomite. Dolomite forms as an early diagenetic phase and occurs episodically in high concentrations driving the bulk isotope record towards the higher dolomite δ18O and varying δ13C values. Aragonite and low-Mg calcite precipitate in the surface water and are present in the sediments in varying amounts (relative aragonite to calcite content for dolomite-poor samples Ar/(Ar + Cc) of 93 to 41 wt%). In an attempt to explain this variation, we revised a precipitation model based on annually laminated sediments containing both aragonite and calcite spatially separated in light and dark coloured laminae, respectively. According to our model, spring calcite precipitation, under close-to-freshwater conditions, is followed by evapoconcentration-driven aragonite precipitation in late summer. The precipitation of these carbonate polymorphs from chemically differing surface waters (i.e. freshwater-influenced and evapoconcentrated) leads to distinctly different oxygen and carbon isotope signatures between sedimentary penecontemporaneous aragonite and calcite. The δ18O and δ13C values of aragonite relative to calcite are significantly higher by several per mille than inferred from aragonite-calcite fractionation factors alone, suggesting that the generalised assumption of sedimentary coeval calcite and aragonite precipitating from water with the same isotopic composition is flawed. The here proposed revised hydrologically-separated carbonate precipitation model is not only taking (i) differences in the isotopic fractionation between carbonate minerals into account, but also (ii) considering the hydrological conditions and the processes favouring the precipitation of a given mineral and ultimately controlling its isotopic composition. If mixed mineralogies are present, this mineralogy-specific approach has the potential of refining environmental reconstructions and reconciling apparently equivocal interpretations of different proxy records

    Ventilation and cave air PCO2 in the Bunker-Emst Cave System (NW Germany): implications for speleothem proxy data

    Get PDF
    Cave air pCO2 (carbon dioxide partial pressure) is, along with drip rate, one of the most important factors controlling speleothem carbonate precipitation. As a consequence, pCO2 has an indirect but important control on speleothem proxy data (e.g., elemental concentrations, isotopic values). The CO2 concentration of cave air depends on CO2 source(s) and productivity, CO2 transport through the epikarst and karst zone, and cave air ventilation. To assess ventilation patterns in the Bunker-Emst Cave (BEC) System, we monitored the pCO2 value approximately 100 m from the lower entrance (Bunker Cave) at bi-hourly resolution between April 2012 and February 2014. The two entrances of the BEC system were artificially opened between 1860?1863 (Emst Cave) and 1926 (Bunker Cave). Near-atmospheric minimum pCO2dynamics of 408 ppmv are measured in winter, and up to 811 ppmv are recorded in summer. Outside air contributes the highest proportion to cave air CO2, while soil, and possibly also ground air, provide a far smaller proportion throughout the whole year. Cave air pCO2 correlates positively with the temperature difference between surface and cave air during summer and negatively in winter, with no clear pattern for spring and autumn. Dynamic ventilation is driven by temperature and resulting density differences between cave and surface air. In summer, warm atmospheric air is entrained through the upper cave entrance where it cools. With increasing density, the cooled air flows toward the lower entrance. In winter, this pattern is reversed, due to cold, atmospheric air entering the cave via the lower entrance, while relatively warm cave air rises and exits the cave via the upper entrance. The situation is further modulated by preferential south-southwestern winds that point directly on both cave entrances. Thus, cave ventilation is frequently disturbed, especially during periods with higher wind speed. Modern ventilation of the BEC system-induced by artificially openings-is not a direct analogue for pre-1860 ventilation conditions. The artificial change of ventilation resulted in a strong increase of ?13Cspeleothem values. Prior to the cave opening in 1860, Holocene ?13Cspeleothem values were significantly lower, probably related to limited ventilation due to the lack of significant connections between the surface and cave. Reduced ventilation led to significantly higher pCO2 values, minimal CO2 degassing from drip water and low kinetic isotope fractionation. Both modern and fossil speleothem precipitation rates are driven by water supply and carbonate saturation, and not by cave air pCO2. Today, pCO2 variability is too small to affect carbonate precipitation rates and the same is likely true for pCO2 variability prior to artificial opening of the cave. Thus, fossil speleothems from BEC System are likely more sensitive to temperature and infiltration dynamics. The Bunker-Emst Cave System, therefore, represents different ventilation patterns and their influence on speleothem proxy data in an exemplary manner, and it may serve as a template for other cave systems

    Ongoing Cenomanian — Turonian heterozoan carbonate production in the neritic settings of Peru

    Get PDF
    The present paper reports on the sedimentological and geochemical record of Albian–Turonian neritic carbonates from the eastern subequatorial Pacific domain in Peru. The focus is on one of the most extreme carbon cycle perturbations of the Phanerozoic, the Oceanic Anoxic Event 2 (late Cenomanian–early Turonian). Thanks to the very expanded and well-exposed sections in Peru, the OAE2 interval was sampled at high temporal resolution for both bulk micrite and bulk organic matter carbon isotopes. Despite the scarcity of significant amounts of organic matter or evidence for oxygen deficiency, the d13C curve matches well with global published high-resolution data for coeval successions such as those reported from the English Chalk and the Portland # 1 core. Biostratigraphic data and the detailed sequence stratigraphic interpretation of these sections are combined with the carbon-isotope chemostratigraphy documented here. Applying the characteristic peak and trough chemostratigraphic terminology for OAE2 (A–C), the following main environmental and carbon isotope stratigraphic features are observed from the late Albian to the early middle Turonian in Peru: (i) An Albian to early late Cenomanian heterozoan ramp recording the pre-OAE2 d13C excursions, specifically the Mid-Cenomanian Event. (ii) A late Cenomanian trough of d13C values (B) showing a progressive deepening leading to the short-lived establishment of middle ramp type sedimentation. (iii) A late Cenomanian to early Turonian d13C plateau (C) characterised by benthonic inner ramp sedimentation during a sea-level highstand phase. (iv) A recovery of d13C values at the end of OAE2 associated to a trophic change, increased influx of argillaceous facies and reduced carbonate production. (v) A early to middle Turonian fluctuating d13C curve, linked to a maximum flooding phase in the Mammites nodosoides Zone and carbonate production during the Collignoniceras woollgari Zone. The data shown here are particularly relevant as they come from very expanded neritic sections in the sub-equatorial eastern Pacific. Many of the features recognized share important similarities with Tethyan and Atlantic sections whilst the ramp system as such did not suffer from a carbonate crisis during OAE2 as recorded, for instance, in Mexico and Tibet

    Sensitivity of Bunker Cave to climatic forcings highlighted through multi-annual monitoring of rain-, soil-, and dripwaters

    Get PDF
    The last two decades have seen a considerable increase in studies using speleothems as archives of past climate variability. Caves under study are now monitored for a wide range of environmental parameters and results placed in context with speleothem data. The present study investigates trends from a seven year long monitoring of Bunker Cave, northwestern Germany, in order to assess the hydraulic response and transfer time of meteoric water from the surface to the cave. Rain-, soil-, and dripwater were collected from August 2006 to August 2013 at a monthly to bimonthly resolution and their oxygen and hydrogen isotope composition was measured. Furthermore, drip rates were quantified. Due to different drip characteristics, annual mean values were calculated for the drip rates of each drip site. Correlations of the annual mean drip rate of each site with precipitation and infiltration demonstrate that the annual infiltration, and thus the annual precipitation control the inter-annual drip-rate variability for all except one site. The hydraulic response is not delayed on an annual basis. All drip sites display identical long-term trends, which suggests a draining of a common karst reservoir over these seven years of monitoring. Correlations of soil- and dripwater monthly δ18O and δD values with atmospheric temperature data reveal water transfer times of 3 months to reach a depth of 40 cm (soilwater at site BW 2) and 4 months for 70 cm depth (soilwater at site BW 1). Finally, the water reaches the cave chambers (15 to 30 m below land surface) after ca. 2.5 years. Consequently, a temporal offset of 29 to 31 months (ca. 2.5 years) between the hydraulic response time (no time lag on annual basis) and the water transfer time (time lag of 29 to 31 months) was found, which is negligible with regard to Bunker Cave speleothems because of their slow growth rates. Here, proxies recording precipitation/infiltration and temperature are registered on a decadal scale. Variations in drip rate and thus precipitation and infiltration are recorded by δ13C and Mg/Ca ratios in speleothem calcite. Speleothem δ18O values reflect both temperature and precipitation signals due to drip rate-related fractionation processes. We document that long-term patterns in temperature and precipitation are recorded in dripwater patterns of Bunker Cave and that these are linked to the North Atlantic Oscillation (NAO)

    Central Tethyan platform-top hypoxia during Oceanic Anoxic Event 1a

    Get PDF
    Short-term hypoxia in epeiric water masses is a common phenomenon of modern marine environments and causes mass mortality in coastal marine ecosystems. Here, we test the hypothesis that during the early Aptian, platform-top hypoxia temporarily established in some of the vast epeiric seas of the central Tethys and caused, combined with other stressors, significant changes in reefal ecosystems. Potentially interesting target examples include time intervals characterized by the demise of lower Aptian rudist-coral communities and the establishment of microencruster facies, as previously described from the central and southern Tethys and from the proto-North Atlantic domain. These considerations are relevant as previous work has predominantly focused on early Aptian basinal anoxia in the context of Oceanic Anoxic Event (OAE) 1a, whereas the potential expansion of the oxygen minimum zone (OMZ) in coeval shallow-water environments is underexplored. Wellknown patterns in the δ13C record during OAE 1a allow for a sufficiently time-resolved correlation with previously studied locations and assignment to chemostratigraphic segments. This paper presents and critically discusses the outcome of a multi-proxy study (e.g., rare earth elements (REEs), U isotopes, and redox-sensitive trace elements) applied to lower Aptian shallow-water carbonates today exposed in the Kanfanar quarry in Istria, Croatia. These rocks were deposited on an extensive, isolated high in the central Tethys surrounded by hemipelagic basins. Remarkably, during chemostratigraphic segment C2, the depletion of redox-sensitive trace elements As, V, Mo, and U in platform carbonates, deposited in normal marine oxic waters, record the first occurrence of basinal, organic-rich sediment deposition in which these elements are enriched. During the C3 segment, seawater oxygen depletion established on the platform top as indicated by the patterns in Ce=Ce∗ and U isotopes. Shifts in redox-sensitive proxies coincide with the expansion of microencruster facies. Segment C4 witnesses the return to normal marine reefal faunas on the platform top and is characterized by patterns in redox-sensitive proxies typical of normal marine dissolved oxygen levels. It remains unclear, however, if platform-top hypoxia resulted from the expansion and upwelling of basinal, oxygen-depleted water masses or if spatially isolated, shallow hypoxic water bodies formed on the platform. Data shown here are relevant as they shed light on the driving mechanisms that control poorly understood faunal patterns during OAE 1a in the neritic realm and provide evidence on the intricate relation between basinal and platform-top water masses. © Author(s) 2019

    Evaluating the role of coastal hypoxia on the transient expansion of microencruster intervals during the early Aptian

    Get PDF
    Worldwide, a growing number of modern coastal marine ecosystems are increasingly exposed to suboxic- or even anoxic conditions. Low seawater oxygen levels trigger significant ecosystem changes and may result in mass mortality of oxygen-sensitive biota. The applicability of observations from recent (anthropogenically influenced) suboxic coastal settings to fossil anoxic shallow-marine environments is, however, as yet poorly explored. The test case documented here are upper Barremian to lower Aptian strata in the Lusitanian Basin (Ericeira section, Portugal). These are characterized by the transient demise of rudist–coral communities and the rapid establishment of microencruster facies in the vacant ecological niches. The hypothesis is tested that the temporal expansion of the microencrusting organism Lithocodium aggregatum took place in response to platform-top seawater oxygen depletion. We critically discuss the outcome of a multi-proxy palaeoseawater redox approach (e.g. Rare Earth Elements (REEs), U isotopes and palaeoecology) and put the robustness of the proxies applied here to the test. This is done by considering issues with these methods in general but also emphasizing the significance of terrigenous contamination and fractionation effects. Data shown here document that evidence for coastal seawater oxygen depletion in the prelude of Oceanic Anoxic Event (OAE) 1a is lacking, and hence, anoxia was not the driving mechanism for the demise of rudist–coral ecosystems in the proto-North Atlantic platform setting studied here. In contrast, well-oxygenated early Aptian platform-top water masses are proposed for this site. Geologically short (decades to millennia) fluctuations in seawater oxygen levels cannot be excluded, however. But even if these took place, they offer no explanation for the Kyr to Myr-scale patterns discussed here. The present paper is relevant as it sheds light on the complexity of mechanisms that drive punctuated Early Cretaceous coral–rudist ecosystem turnover, and assess strengths and weaknesses of redox proxies applied to ancient shallow-marine platform carbonates. © 2020 The Authors. Lethaia published by John Wiley & Sons Ltd on behalf of Lethaia Foundatio

    Bunker Cave stalagmites: an archive for central European Holocene climate variability

    Get PDF
    Holocene climate was characterised by variability on multi-centennial to multi-decadal time scales. In central Europe, these fluctuations were most pronounced during winter. Here we present a record of past winter climate variability for the last 10.8 ka based on four speleothems from Bunker Cave, western Germany. Due to its central European location, the cave site is particularly well suited to record changes in precipitation and temperature in response to changes in the North Atlantic realm. We present high-resolution records of δ18O, δ13C values and Mg/Ca ratios. Changes in the Mg/Ca ratio are attributed to past meteoric precipitation variability. The stable C isotope composition of the speleothems most likely reflects changes in vegetation and precipitation, and variations in the δ18O signal are interpreted as variations in meteoric precipitation and temperature. We found cold and dry periods between 8 and 7 ka, 6.5 and 5.5 ka, 4 and 3 ka as well as between 0.7 and 0.2 ka. The proxy signals in the Bunker Cave stalagmites compare well with other isotope records and, thus, seem representative for central European Holocene climate variability. The prominent 8.2 ka event and the Little Ice Age cold events are both recorded in the Bunker Cave record. However, these events show a contrasting relationship between climate and δ18O, which is explained by different causes underlying the two climate anomalies. Whereas the Little Ice Age is attributed to a pronounced negative phase of the North Atlantic Oscillation, the 8.2 ka event was triggered by cooler conditions in the North Atlantic due to a slowdown of the thermohaline circulation

    Impact of a regional fault zone on the properties of a deep geothermal carbonate reservoir unit (Devonian of NRW)

    Get PDF
    Funding: This study was supported by the Interreg NWE Programme through the Roll-out of Deep Geothermal Energy in NorthWest Europe (DGE-ROLLOUT) Project (www.nweurope. eu/DGE-Rollout). The Interreg NWE Programme is part of the European Cohesion Policy and is financed by the European Regional Development Fund (ERDF). Further funding was provided by the Bundesministerium für Wirtschaft und Energie of NRW and the Ruhr-University Bochum Research Department under the Closed Carbon Cycle Economy project.A multi-proxy field and laboratory study was conducted to investigate the impact of a regional fault zone on Devonian carbonate geothermal reservoir properties. The outcrop analogue chosen is exposed in the Steltenberg quarry (North Rhine-Westphalia, Germany) and provides access to Devonian lime- and dolostone units affected by branches of the Ennepe Thrust Fault zone. Data presented include (i) field evidence from sedimentological and structural data, (ii) petrographic and mineralogical analyses, and (iii) geochemical and petrophysical data. Although the interpretation of the depositional environment is not trivial, the carbonate facies present generally reflect the shedding of reefal material from large bioherms to the west of the study areas as well as localised, small bioherms prone to storm disintegration. The inherited properties of these carbonates at deposition, and a clear understanding of their diagenetic history, are the prerequisite for extrapolation between outcrop analogues and their corresponding subsurface units. We document a detailed interpretation of the paragenetic sequence that affected these rocks from deposition, burial, subsequent hydrothermal overprint related to rock disintegration and fluid circulation along the fault zone, and finally, late-stage meteoric overprint. Emphasis is placed on various forms of dolomitisation and its effect on rock properties and reservoir quality. The resulting scenario is complex, and when comparing the data from the Steltenberg quarry with nearby outcrops, significant regional heterogeneity is observed. It is important to separate between: (i) diffuse, locally distributed dolomitisation, (ii) replacive dolomitisation (fronts), spatially separating lime- and dolostones, and (iii) fault-bound, hydrothermal dolomitisation. The Devonian carbonates in the Steltenberg quarry examined here have higher thermal conductivity compared to the Jurassic (Malm) carbonate units in the Munich area, with some even higher than the values of massive limestone facies of the Munich area. As a large portion of North Rhine-Westphalia’s territory is underlain by Devonian carbonates, this is considered significant. However, emphasis is placed on the fact, that data shown here document the spatially complex organisation of rock types and their reservoir properties. This presents a warning against oversimplifications when extrapolating observations from outcrops into subsurface rock bodies.Publisher PDFPeer reviewe

    Microborings reveal alternating agitation, resting and sleeping stages of modern marine ooids

    Get PDF
    ABSTRACTOoids are abundant carbonate grains throughout much of Earth's history, but their formation is not well understood. Here, an in‐depth study of microbial bioerosion features of Holocene ooids from the Schooner Cays ooid shoals (Great Bahama Bank, Eleuthera, Bahamas) and the Shalil al Ud ooid shoals in the Gulf (Abu Dhabi, United Arab Emirates) is presented. No obvious differences were found in ooid size distribution, cortex layer thickness, the composition of nuclei or euendolithic community when comparing ooids from both locations. Microendolithic borings are present in most studied ooid surfaces, but the intensity of (micro‐)bioerosion varies significantly. Applying an epoxy vacuum cast‐embedding technique allowed the identification of ichnotaxa and their inferred producers (various genera of diatoms, cyanobacteria, coccolithophores and unspecified bacteria). Euendolithic taxa have specific low‐light tolerances and light optima. This implies that information about the relative bathymetry (seafloor versus burial within an ooid shoal) and ecology for ooid cortex formation can be obtained via the presence or absence of their respective ichnotaxa. The history of a statistically significant number of ooid cortices can be translated into dune dynamics and the temporal variations thereof by allocating the inferred index producer to a defined burial or light penetration zone. In this context, ooid formation can be divided into four stages: (i) an agitation stage in the water column, characterized by the colonization of grains by photoautotrophs; (ii) a resting stage, characterized by temporary burial of the ooid, leading to immobilization and a shift towards heterotrophs; (iii) a sleeping stage, characterized by prolonged burial and colonialization by organotrophs; and (iv) a reactivation stage, characterized by a resurfacing of the ooid and a subsequent shift towards photoautotrophs. The sleeping stage is presumably a stage of ooid degradation where bioerosion, mainly by heterotrophic fungi and bacteria is particularly active.</jats:p

    Testing the preservation potential of early diagenetic dolomites as geochemical archives

    Get PDF
    Early marine diagenetic dolomite is a rather thermodynamically‐stable carbonate phase and has potential to act as an archive of marine porewater properties. However, the variety of early to late diagenetic dolomite phases that can coexist within a single sample can result in extensive complexity. Here, the archive potential of early marine dolomites exposed to extreme post‐depositional processes is tested using various types of analyses, including: petrography, fluid inclusion data, stable δ13C and δ18O isotopes, 87Sr/86Sr ratios, and U‐Pb age dating of various dolomite phases. In this example, a Triassic carbonate platform was dissected and overprinted (diagenetic temperatures of 50 to 430°C) in a strike‐slip zone in Southern Spain. Eight episodes of dolomitization, a dolostone cataclasite and late stage meteoric/vadose cementation were recognized. The following processes were found to be diagenetically relevant: (i) protolith deposition and fabric‐preservation, and marine dolomitization of precursor aragonite and calcite during the Middle–Late Triassic; (ii) intermediate burial and formation of zebra saddle dolomite and precipitation of various dolomite cements in a Proto‐Atlantic opening stress regime (T ca 250°C) during the Early–Middle Jurassic; (iii) dolomite cement precipitation during early Alpine tectonism, rapid burial to ca 15 km, and high‐grade anchizone overprint during Alpine tectonic evolution in the Early Eocene to Early Miocene; (iv) brecciation of dolostones to cataclasite during the onset of the Carboneras Fault Zone activity during the Middle Miocene; and (v) late‐stage regression and subsequent meteoric overprint. Data shown here document that, under favourable conditions, early diagenetic marine dolomites and their archive data may resist petrographic and geochemical resetting over time intervals of 108 or more years. Evidence for this preservation includes preserved Late Triassic seawater δ13CDIC values and primary fluid inclusion data. Data also indicate that oversimplified statements based on bulk data from other petrographically‐complex dolomite archives must be considered with caution
    • …
    corecore