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                             Elsevier Editorial System(tm) for Chemical 

Geology 

                                  Manuscript Draft 

 

 

Manuscript Number: CHEMGE9714R1 

 

Title: Sensitivity of Bunker Cave to climatic forcings highlighted 

through multi-annual monitoring of rain-, soil-, and dripwaters  

 

Article Type: Research paper 

 

Keywords: drip rate; infiltration; temperature; oxygen and hydrogen 

isotopes; NAO; cave microclimate monitoring 

 

Corresponding Author: Dr. Sylvia Riechelmann, D.Sc. 

 

Corresponding Author's Institution: Institute of Geology, Mineralogy and 

Geophysics 

 

First Author: Sylvia Riechelmann, D.Sc. 

 

Order of Authors: Sylvia Riechelmann, D.Sc.; Andrea Schröder-Ritzrau; 

Christoph Spötl; Dana F. C Riechelmann; Detlev K Richter; Augusto 

Mangini; Norbert Frank; Sebastian F. M Breitenbach; Adrian Immenhauser 

 

Abstract: The last two decades have seen a considerable increase in 

studies using speleothems as archives of past climate variability. Caves 

under study are now monitored for a wide range of environmental 

parameters and results placed in context with speleothem data. The 

present study investigates trends from a seven year long monitoring of 

Bunker Cave, western Germany, in order to assess the hydraulic response 

and transfer time of meteoric water from the surface to the cave. Rain-, 

soil-, and dripwater were collected from August 2006 to August 2013 at a 

monthly to bimonthly resolution and their oxygen and hydrogen isotope 

composition was measured. Furthermore, drip rates were quantified. Due to 

different drip characteristics, annual mean values were calculated for 

the drip rates of each drip site. Correlations of the annual mean drip 

rate of each site with precipitation and infiltration demonstrate that 

the annual infiltration, and thus the annual precipitation control the 

inter-annual drip-rate variability for all except one site. The hydraulic 

response is not delayed. All drip sites display identical long-term 

trends, which suggests a draining of a common karst reservoir over these 

seven years of monitoring. Correlations of soil- and dripwater monthly 

delta18O and deltaD values with atmospheric temperature data reveal water 

transfer times of 3 months for soilwater at site BW 2 (40 cm depth) and 4 

months for 70 cm depth (soilwater at site BW 1). Finally, the water 

reaches the cave chambers (15 to 30 m below land surface) after ca. 2.5 

years. Consequently, a temporal offset of 29 to 31 months (ca. 2.5 years) 

between the hydraulic response time (no time lag on annual basis) and the 

water transfer time (time lag of 29 to 31 months) was found, which is 

negligible with regard to Bunker Cave speleothems because of their slow 

growth rates. Variations in drip rate and thus, precipitation and 

infiltration are recorded by delta13C and Mg/Ca ratios in speleothem 

calcite. Speleothem delta18O values reflect both temperature and 

precipitation signals due to drip rate-related fractionation processes. 

We document that long-term patterns in temperature and precipitation are 



recorded in dripwater patterns of Bunker Cave and that these are linked 

to the North Atlantic Oscillation (NAO). 

 

 

 

 



Dear Dr. Böttcher,  

 

Please find below our response to the reviewers. We would like to emphasize that we greatly 

appreciate the helpful and constructive comments of the two reviewers. Their work certainly 

led to an improved version of our paper. In the following, detailed answers to the individual 

comments are provided. 

 

Reviewer #1: Overview - This study involves an analysis of oxygen and hydrogen isotopic 

values in precipitation, soil water, and cave dripwater, as well as calculations of infiltration 

systematics and measurements of dripwater activity. The overarching goal is to better 

understand the response time and degree of mixing/alteration of isotopic signals between the 

land surface and the cave. Once these processes are constrained, speleothems can then be used 

most effectively to reconstruct paleoenvironmental change and thereby linked to climatic 

phenomena such as the NAO.  

 

Aside from the fact that paper too often reads as a laundry list of observations, I have two 

major concerns. The first, as I note below, might be due to my inexperience working with 

vadose zone hydraulics, but involves the calculation of infiltration RATES without knowing 

antecedent moisture conditions and hydraulic head. Perhaps I simply missed it, but I see only 

calculations of permeability. I am more than happy to have my mistake pointed out to me by 

the authors in the revision. In any case, this section must be more carefully and fully fleshed 

out before it can be considered for publication. In the hydro literature, entire manuscripts are 

devoted to calculating infiltration rates but here it seemingly appears out of thin air next to a 

permeability determination. Why not just let the isotopes speak for themselves? Forget the 

permeability calculations and just focus on what the geochemistry of the drips vs precip tells 

you. The paper would be more concise and would contain less arm-waiving. 

 

Our reply: We thank the reviewer for this constructive comment. The calculation of the 

coefficient of permeability (kf) is a very simplified approach to calculate the transfer time 

through the soil. This approach ignores many important factors, which influence the 

infiltration of water in the soil. Therefore, we follow the suggestion of the reviewer and focus 

on the isotopes. As a consequence all text sections regarding the kf value and the transfer time 

calculated by it are deleted.  

Revision Notes
Click here to download Revision Notes: Response to Reviewers.docx

http://ees.elsevier.com/chemge/download.aspx?id=481653&guid=d1dc731f-4cda-4ba8-9968-52f6df24e06c&scheme=1


Second, I know that there are numerous studies showing offsets between d18O values of drips 

collected at the same time in the same room of the same cave. Likewise, variations in d13C in 

drips can be ascribed to PCP, but how do you substantially alter the d18O of infiltrating water 

by PCP? Evaporation could do it, but the dD/d18O relationships suggest no evap is occurring.  

 

Our reply: Due to statistical artifacts, we were led on the wrong path. We re-calculated all 

correlations with the monthly data as suggested by the second reviewer and our original 

conclusion that PCP alters the 
18

O signal is thus invalid. We apologize for this. These parts 

were completely rewritten. 

 

Line 32 - "dripwater were" 

 

Our reply: Done (line 32). 

 

35 - commas used incorrectly. Edit as follows: "…infiltration, and thus the annual 

precipitation, control …"  

 

Our reply: Done (line 37). 

 

39 - what is BW2? Is this a specific sample? A location? A depth? A soil classification (B 

horizon…?) 

 

Our reply: We clarified this part (lines 40-43) and wrote: “Correlations of soil- and dripwater 

monthly 
18

O and D values with atmospheric temperature data reveal water transfer times of 

3 months for soilwater at site BW 2 (40 cm depth) and 4 months for 70 cm depth (soilwater at 

site BW 1). “  

 

40 - am I interpreting this correctly? Your estimates are that water takes up to 6 months to 

infiltrate 40 cm into the soil?!? What sort of soil is this? If it's fine-grained, I would have 

thought that capillarity alone would draw water down much faster than this. 

 

Our reply: This issue has been solved. See first main comment. 

 

41 - this must mean that the water moves much, much faster once it enters the epikarst. How 



deep is the cave below landsurface? Below soil/bedrock interface? This should be mentioned 

here. So far, the abstract has been a little jumpy and hard to follow.  

 

Our reply: We added the information about the depth of the cave chambers below 

landsurface as suggested (line 43). 

 

42 - is this a consistent offset? Is it worth mentioning the magnitude or nature of this offset 

here in the abstract? 

 

Our reply: It is a consistent offset and we added the magnitude of it in the abstract (line 44). 

 

 44 - repeating the word "due" is awkward  

 

Our reply: This sentence is deleted. See second main comment. 

 

44 - I will be interested to read how you know that PCP is to blame; I think of PCP as 

influencing d13C but not necessarily O because the oxygen reservoir is so much larger than 

that of C.  

 

Our reply: See second main comment. 

 

45 - since O is affected by not H, it can't be evaporation, but I don't see (yet) how PCP can 

influence the d18O signal so profoundly.  

 

Our reply: See second main comment. 

 

49 - this abstract is a little choppy. Adding a little more information to tie the narrative 

together would help the reader understand the point of the study and would make for a more 

fluid discussion. 

 

Our reply: Due to changes according to the first and second main comment and the main 

comments of the second reviewer, the abstract was partly rewritten. 

 

53 - perhaps write "(for a summary, see Fairchild and Baker, 2012)" 



 

Our reply: Done (lines 57-58). 

 

54 - I suggest using either "Th/U" or "230Th/234U" but don't mix and match 

 

Our reply: 
230

Th/U is an established notation. See for example Scholz and Hoffmann (2008). 

We keep it as it is (line 59). 

 

55 - "many, largely geochemical, parameters, " is awkwardly worded 

 

Our reply: We replaced “many, largely” by “several, mostly” (line 60). 

 

57 - use "major" rather than "main" 

 

Our reply: Done (line 61). 

 

60 - remove first use of "e.g." 

 

Our reply: This part was rewritten and the e.g. was deleted. 

 

73 - Do you mean to state that there have been studies on the elemental composition of rain 

water? I am surprised by this. 

 

Our reply: We apologize for this confusing sentence. There are no studies on the elemental 

composition of rainwater in the study area. We rewrote the sentence to state this correctly 

(lines 69-72). 

 

74 - this is the major raison d'etre for the study: to better understand cave carbonate-based 

paleoenvironmental reconstructions through analysis of cave hydraulics. Make that point 

more clear in this sentence. 

 

Our reply: We rewrote the sentence as the reviewer suggested: “Furthermore, in order to link 

the dripwater with speleothems used for palaeoclimate reconstructions, recent cave carbonate 



precipitates have been investigated in combination with their respective dripwater 

composition and the hydraulic regime in the cave” (lines 72-75). 

 

79 - it may be preference only, but I suggest adding the word "values" after "d18O" or "dD". 

 

Our reply: Done (line 80). 

 

83 - is "whilst" the correct word here? Are you actually contrasting the Breitenbach 

study/interpretation with that of Riechelmann? The way it's written, it seems like both authors 

refer to the same cave system. 

 

Our reply: We deleted “whilst” and included two sentences to clarify this matter (lines 83-

86). 

 

87 - "focused" is misspelled 

 

Our reply: Corrected (line 88). 

 

92 - don't use "relevant" twice in the same sentence 

 

Our reply: We replaced the first “relevant” by “of significance” (line 93). 

 

94 - "This paper" 

 

Our reply: Done (line 95). 

 

97 - "main goals of the present study" 

 

Our reply: Done (line 98). 

 

97 - longer than what? Be specific here. Multi-annual? Decadal? 

 

Our reply: We added “multi-annual” after “longer-term” (line 99). 



 

98 - what the "environmental parameters"? Temp? Precip? Be specific. 

 

Our reply: We modified lines 95 to 96 to clarify this. 

 

101 - delete this last sentence. It is redundant with (iv). 

 

Our reply: Done. 

 

103 - Here at the end of the Introduction, I think the first paragraph is a bit of a detour and 

suggest shortening it considerably and integrating it into the second paragraph. 

 

Our reply: We shortened the first paragraph and put it together with the second one as 

suggested by the reviewer (lines 56-64). 

 

106 - what does "fully humid" mean? 

 

Our reply: Fully humid means there is no dry season, but equally distributed rainfall 

throughout the whole year. We used the Köppen-Geiger climate classification world map 

updated by Kottek et al. (2006). Nevertheless, we added a short explanation in brackets (lines 

106-107). 

 

109 - include 1 s.d. values of mean annual precip. 

 

Our reply: Due to minor relevance of this information regarding the interpretation and 

discussion of our paper, we deleted the paragraph and Figure 2. 

 

111 - include 1 s.d. values of MAAT 

 

Our reply: Due to minor relevance of this information regarding the interpretation and 

discussion of our paper, we deleted the paragraph and Figure 2. 

 

114 - you don't need to tell the reader it is colder in winter than in summer; delete this 

sentence 



 

Our reply: Done. 

 

 120 - do we have any estimates of percent land surface covered by houses, roads, parking 

lots, sidewalks, etc? These are obviously important components of infiltration hydrology. 

 

Our reply: The information was added as requested (lines 123-124). 

 

123 - I am not sure "brown" is appropriate here. What about Munsell soil chart codes? 

123 - I would write " loamy soil formed in loess" 

 

Our reply: We added the colours of the soil according to the Munsell soil chart code and 

defined the soil according to USDA Soil Taxonomy (lines 115-118). 

 

126 - "… and subordinate along bedding planes" sounds awkward. I think you are missing a 

word in this phrase. 

 

Our reply: We deleted “subordinate along”.  

 

138 - how was rainwater stored between (bi)monthly sample collection visits? What methods 

were utilized to minimize evaporation? 

 

Our reply: We wrote “Rainfall amount was measured and sampled daily and collected as 

monthly samples between 2007 and 2012. In 2013, rainwater samples were collected only 

bimonthly. Rainwater samples were stored in PET bottles in a fridge to minimize 

evaporation.” to clarify this (lines 133-136). 

 

145 - I suggest hyphenating TS-1, etc. 

 

Our reply: In order to keep the consistency with all other Bunker Cave studies, which 

examined the same drip sites, we prefer not to change the labelling of the sample sites.  



 

160 - since you are converting to volumetric discharge, write the equation in the standard 

form as volumetric discharge (ml/time) = drip rate (drips/time) x volume/drip (ml/drips) 

 

Our reply: Done (line 158). 

 

165 - what is an "instantaneous water sample" and how do you know the drip volume? 

 

Our reply:  An instantaneous water sample is collected during the monitoring tour, therefore 

the exact time of collection is known. The drip volume was determined as described in the 

previous sentence. In order to clarify this we added this information (lines 163-164). 

 

176 - delete hyphen 

 

Our reply: Done (lines 175 and 178). 

 

176 - I assume this means ±0.09‰? 

 

Our reply: We added “±” (lines 175 and 178). 

 

183 - "(Fig. 1) - Hagen-Fley … and Hemen (…) - were used…" 

 

Our reply: Done (lines 182-184). 

 

191 - is 13:00 a time of day? 

 

Our reply: We replaced it by “1 p.m.” (lines 190 and 195). 

 

194 - this equation needs to be referenced to its original author 

 

Our reply: Done (line 191). 

 

198 - "equation was used" 

 



Our reply: Done (line 197). 

 

203 - ok but weather station on top of the cave would have been better 

 

Our reply: The reviewer is right. The perfect solution would be a weather station directly 

above the cave, where precipitation amount and temperature are measured. Unfortunately, we 

did not have this luxury and therefore use the temperature data being from the nearest 

meteorological station 15 km away. Precipitation was collected at the German Cave Museum 

only 1.5 km from Bunker Cave (subchapter 3.1 lines 131-133).  

 

215 - how were the soil samples collected? Please include methodology. If soils were 

compacted during collection, then their permeability would have been decreased. 

 

Our reply: This issue has been solved. See first main comment. 

 

216 - is "loam" the formal particle size distribution (e.g., silty clay loam) or a more generic 

term? 

 

Our reply: This issue has been solved. See first main comment. 

 

223 - As I recall, permeability (k) is fluid-specific, whereas hydraulic conductivity (K) is 

permeability specifically dealing with water. Is there a reason that k is chosen over K here? 

 

Our reply: This issue has been solved. See first main comment. 

 

246 - combine some of the short, choppy sentences that begin this paragraph 

 

Our reply: Done (line 246 ff.). 

 

251 - is the negative supposed to be in front of 171? How do you have negative infiltration? 

Does this mean potential ET was greater than precip by that amount? That's a very dry year in 

Germany. 

 



Our reply: Yes, the negative is supposed to be in front of 171, see also Figure 4. 2003 was an 

exceptional dry year. Mean annual ET was greater than the precipitation amount and thus 

resulted in a negative infiltration and a dry year in this part of Germany (lines 232-233). 

 

252 - you have already defined the acronym MAAT so use it here rather than redefining it 

 

Our reply: Done (line 235). 

 

253 - I find the word "whilst" to be distracting. I suggest replacing it in all case with "while" 

 

Our reply: Done. 

 

299 - "akin" means "similar" but isn't really correctly used in this sentence. Replace with 

"similar" 

 

Our reply: This sentence has been deleted. 

 

311 - sections 4.1 - 4.3 involve a largely mundane play-by-play of observations. Perhaps it 

will read better when juxtaposed to the figures on the journal page, but as it stands now, it is 

difficult to follow (or care about) without knowing what the point of all this is. The paper 

needs to include a better introduction to each section (or at least each major section) to 

provide a road map to the reader about what information is about to learned and why it is 

important and how it fits into the overall narrative of the study. For example, it is interesting 

and important to note that the drip sites mostly show similar trends over time, but why is this 

important to the study? 

 

Our reply: We apologize for the problems pointed out by the reviewer. We added 

information regarding why these results are of importance at the beginning of the results 

section (lines 217-222). Furthermore, the individual sections were shortened or rewritten (see 

also the second main comment of the second reviewer). 

 

316 - the abbreviation "i.e." is overused in this manuscript and is inappropriate here. 

 

Our reply: This section was deleted. See first main comment. 



 

320 - I am missing something here, and I recognize that it is likely rooted in my own lack of 

understanding of this topic, but infiltration is not solely a function of permeability. This is just 

one of several factors that drive infiltration. The others are the depth of ponded water (that 

provides the head) and the antecedent moisture (saturation state) of the soil. It is unclear to me 

how these infiltration rate calculations were calculated. 

 

Our reply: This section was deleted. See first main comment. 

 

329 - I am not exactly sure what is meant by "hydrologically connected" but at least they have 

similar hydraulic properties (orientation, number and size of fractures, matrix hydraulic 

conductivity, etc.). 

 

Our reply: We rewrote the sentence to “these sites are characterized by similar hydrological 

properties” (line 300). 

 

330 - drips don't respond to a "pattern", but instead they respond to some type of forcing, most 

likely a climatic one. Please reword. 

 

Our reply: We agree with the reviewer and rewrote the sentence: “…respond to the same 

environmental (climate) forcing.” (lines 301-302). 

 

353 - or it might not… 

 

Our reply: We agree with the reviewer. That is why we used the word “might”. The 

correlations are possibly affected but not necessarily. We rewrote the sentence slightly to “…, 

which might affect the correlation” (line 326). 

 

453 - I would like to see a citation to a study in which PCP is shown to noticeably alter d18O 

values. It's effects should be concentrated in the d13C value given that the carbon reservoir in 

infiltrating fluids is much, much smaller than the oxygen reservoir. 

 

Our reply: This part has been deleted. See second main comment and first main comment of 

the second reviewer. 



 

Notes on Figures.  

Figures, 4, 6, and 7 - I can't distinguish between errors bars for different points (triangles vs 

circles) in some portions of a few panels (TS5 and BW1, as examples). 

 

Our reply: We changed colors to better distinguish the error bars. 

 

 

Reviewer #2: This is a nice study that presents the synthesis of a seven years of monitoring in 

Bunker Cave, NW-Germany. Even if it is already published, I think that a complete figure 

with all the monthly data is necessary here so that we can appreciate the seasonality of the 

rainfall d18O and the more or less stability of the dripping cave water.  

This cave is a specific site that is covered by a thick soil which slows down the rainfall 

infiltration but this is not the main reason and the important result in this study is certainly the 

quite long time (up to 3 years) that meteoric water takes to reach the cave galleries. This is an 

important result that highlights the importance of a long monitoring in order to understand the 

infiltration processes and for this reason it merits publication.  

However there are two major points that needs more explanations and/or different 

interpretations: 

1)    I am not convinced by the fact that prior calcite precipitation (PCP) changes the d18O 

composition of seepage water because the molecule quantity of water containing oxygen is 

much more important than HCO3- ions that are involved in the calcite precipitation. 

Moreover, that fact that there is no difference between instantaneous and monthly collected 

water is in contradiction of a PCP influence on the d18O. PCP which is likely seasonal in 

most sites, would then produce differences between summer and winter dripping waters (?). I 

suggest that the authors check this possibility by measuring Mg/Ca and Sr/Ca and doing Ca-

Mg/Ca and Ca-Sr/Ca graphs. This is an important point on which all the work that is (and 

was) done on fluid inclusions depends; 

 

Our reply: Statistical artifacts led to a misinterpretation of the data. We apologize for that. 

Thus, the original interpretation that PCP alters 
18

O is invalid. The respecting passages have 

been deleted and rewritten. See also second main comment by the first reviewer. Furthermore, 

we followed the suggestion by the reviewer and present the monthly data of 
18

O and D of 

rain-, soil- and dripwater. 



 

2)    In the results part, you have to explain clearly, in the main text, how you calculate the 

 d18O annual  means : what limits did you take , month of beginning and month of end . 

Please explain how you choose these limits. Also, you have to precise the months during 

which the infiltration occurs (winter and spring? part of Fall or most of the year).  

But, the way used to calculate the mean d18O of rainwater is already an interpretation 

because it is calculated on ONE year. It could be actually much more or less;  you may find 

this by doing weighted averaging from month to month (in the past) until reaching the d18O 

value of the dripping site.  Finally, considering the surface air temperature as a proxy of the 

d18O seems hazardous unless you have strong correlations between T and rainwater d18O. 

 

Our reply: At the beginning of the results section we added information on the calculation of 

the annual mean values. Furthermore, we added the time of main infiltration in lines 233-234. 

We followed the reviewer’s suggestion to use the monthly values to calculate the water 

transfer time. However, since the GNIP stations are far away from the study site and 
18

O and 

D values of rain water of the monitoring only cover the monitoring period, we used the 

atmospheric temperature of the close-by meteorological stations. The reviewer is correct by 

pointing out that this approach is only feasible, when 
18

O and D of rainwater show a strong 

correlation with T. Since this is the case as we pointed out in section 4.1 lines 253-256 (citing 

Riechelmann et al., 2011) and section 5.2 lines 368-369, we consider this approach as valid. 

According to this new approach results (4.3) and interpretation and discussion (5.2) sections 

were rewritten. 

 

Detailed comments: 

About references: when speaking about generalities, I think that it would be better to refer to 

precise studies that marked the topics. For example, line 56 and elsewhere, instead of 

referring to the nice book of Fairchild and Baker 2012, it would be better to refer to Cheng et 

al. or Hellstrom et al. or other specialists in U-Th that really worked on the topics; the same 

for other subjects; otherwise the Fairchild and Baker book will be referred in all cases. 

 

Our reply: We replaced the Fairchild and Baker citation by other studies. 

 

Lines 58-59 : what drove this choice of references ? If it is a globally important like results on 

speleothem stable isotopes, you may cite Cheng et al. 2016 Nature which presents an 



unprecedented well dated 600ka speleothem record; you may also focus on more regional 

studies. 

 

Our reply: The choice of references should be representative for the region. Therefore, we 

cite original studies from western central Europe. We feel that the Cheng et al. (2016) study, 

being focused on the Asian monsoon, is not appropriate here (lines 62-63). 

 

Lines 90-91 : I do not entirely agree that nobody before detrended the seasonal signal. In their 

work on Villars and Chauvet caves, Genty et al. (GCA 2014) made rainfall averaging on 

several years (up to > 10 yrs) which is a real long term analysis. 

 

Our reply: We corrected this (line 91). 

 

Lines 101-102 : not necessary in an article 

 

Our reply: This sentence was deleted. 

 

Lines 153-155 : don't you think that the fact that there is no difference between instantaneous 

and monthly collected water is in contradiction of a PCP influence on the d18O ? PCP which 

is likely seasonal in most sites, would then produce differences between summer and winter 

dripping waters (?). 

 

Our reply: The reviewer is right. PCP does not alter 
18

O in Bunker Cave. See also first main 

comment. 

 

Line 194 : dealing with temperatures, I guess that it is 273 instead 237 (?) 

 

Our reply: This value is correct (237; line 193). 

 

Lines 293-295 : this sentence is not clear to me 

 

Our reply: The sentence was rewritten (lines 282-283). 

 

Lines 351-353 : I entirely agree with this. Do you have any idea of the duration, in the year, of 



the real infiltration ? Or, what are the months, in the year, during which the rainfall infiltrate ? 

 You may find this by doing weighted averaging from month to month  (in the past) until 

reaching the d18O of the dripping site. 

 

Our reply: We added the information of infiltration time in this paragraph (lines 324-326). 

 

 

In summary, these were constructive reviews, which provided helpful suggestions for 

improvement of this manuscript that we submit as a revised version. 

 

Sincerely 

 

Sylvia Riechelmann on behalf of the authors. 
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ABSTRACT 26 

The last two decades have seen a considerable increase in studies using speleothems as 27 

archives of past climate variability. Caves under study are now monitored for a wide range of 28 

environmental parameters and results placed in context with speleothem data. The present 29 

study investigates trends from a seven year long monitoring of Bunker Cave, western 30 

Germany, in order to assess the hydraulic response and transfer time of meteoric water from 31 

the surface to the cave. Rain-, soil-, and dripwater were collected from August 2006 to August 32 

2013 at a monthly to bimonthly resolution and their oxygen and hydrogen isotope 33 

composition was measured. Furthermore, drip rates were quantified. Due to different drip 34 

characteristics, annual mean values were calculated for the drip rates of each drip site. 35 

Correlations of the annual mean drip rate of each site with precipitation and infiltration 36 

demonstrate that the annual infiltration, and thus the annual precipitation control the inter-37 

annual drip-rate variability for all except one site. The hydraulic response is not delayed. All 38 

drip sites display identical long-term trends, which suggests a draining of a common karst 39 

reservoir over these seven years of monitoring. Correlations of soil- and dripwater monthly 40 


18

O and D values with atmospheric temperature data reveal water transfer times of 3 41 

months for soilwater at site BW 2 (40 cm depth) and 4 months for 70 cm depth (soilwater at 42 

site BW 1). Finally, the water reaches the cave chambers (15 to 30 m below land surface) 43 

after ca. 2.5 years. Consequently, a temporal offset of 29 to 31 months (ca. 2.5 years) between 44 

the hydraulic response time (no time lag on annual basis) and the water transfer time (time lag 45 

of 29 to 31 months) was found, which is negligible with regard to Bunker Cave speleothems 46 

because of their slow growth rates. Variations in drip rate and thus, precipitation and 47 

infiltration are recorded by 
13

C and Mg/Ca ratios in speleothem calcite. Speleothem 
18

O 48 

values reflect both temperature and precipitation signals due to drip rate-related fractionation 49 

processes. We document that long-term patterns in temperature and precipitation are recorded 50 
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in dripwater patterns of Bunker Cave and that these are linked to the North Atlantic 51 

Oscillation (NAO).  52 

 53 

1. Introduction 54 

 55 

Palaeoclimate reconstructions based on speleothems, i.e. mostly carbonate deposits 56 

formed in caves, have increased significantly during the last two decades (for a summary, see 57 

Fairchild and Baker, 2012). The most important strengths of speleothems are the precise 58 

230
Th/U dating (e.g., Dorale et al., 2004; Scholz and Hoffmann, 2008; Cheng et al., 2013) and 59 

the availability of several, mostly geochemical, parameters such as carbon and oxygen isotope 60 

values, major and trace elemental abundances, and 
18

O and D of fluid inclusions (e.g., 61 

Niggemann et al., 2003; Mangini et al., 2005; Vonhof et al., 2006; Fohlmeister et al., 2012; 62 

Scholz et al., 2012; Luetscher et al., 2015). These can be used for single- or multi-proxy 63 

approaches to reconstruct past climate dynamics.  64 

In order to gain a better understanding of the processes influencing geochemical 65 

proxies in the soil and epikarst zone, as well as processes acting during deposition of 66 

speleothems, sophisticated monitoring programmes have been established (e.g., Spötl et al., 67 

2005; Mattey et al., 2008b, 2016; Riechelmann et al., 2011, Wassenburg et al., 2013; Genty et 68 

al., 2014; van Rampelbergh et al., 2014, Breitenbach et al., 2015; Treble et al., 2016). In the 69 

context of these efforts, cave air temperature, pCO2 and humidity, drip rate, as well as the 70 

isotopic composition of rain-, soil- and dripwater and the element concentrations of soil-, and 71 

dripwater have been recorded. Furthermore, in order to link the dripwater with speleothems 72 

used for palaeoclimate reconstructions, recent cave carbonate precipitates have been 73 

investigated in combination with their respective dripwater composition and the hydraulic 74 
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regime in the cave (e.g., Miorandi et al., 2010; Tremaine et al., 2011; Riechelmann et al., 75 

2013, 2014). 76 

Most monitoring studies focused on seasonal variations of the above-mentioned 77 

parameters, whereby, for example, the drip rate was analysed to study the response to rainfall 78 

events or the hydrological connection of the drip sites (Baker et al., 1997; Mattey et al., 79 

2008b; Riechelmann et al., 2011). The analysis of dripwater 
18

O and D values shows either 80 

seasonal variations (Mattey et al., 2008a, Breitenbach et al., 2015) or rather stable values 81 

close to the annual mean of rainwater (Riechelmann et al., 2011; van Rampelbergh et al., 82 

2014). Seasonal variations in cave dripwater reflect a fast transfer of the water (e.g., 83 

Breitenbach et al., 2015). The lack of an intra-annual pattern points to strong mixing in the 84 

epikarst and/or the vadose zone with transfer times between the soil and the cave drip site in 85 

excess of one year (e.g., Riechelmann et al., 2011; van Rampelbergh et al., 2014). Financial 86 

constraints, accessibility, or lack in manpower commonly limit monitoring studies to 87 

durations of a few years or less. Thus far, only a very limited number of studies focused on 88 

multi-annual trends of the monitored parameters and implications for speleothem research 89 

(Genty and Deflandre, 1998; Treble et al., 2013; Genty et al., 2014, Breitenbach et al., 2015; 90 

Mattey et al., 2016). To the knowledge of the authors, only the study by Genty et al. (2014) 91 

detrended the seasonal signal in order to gain insights in potential longer-term (> 5yrs) trends. 92 

This is of significance as particularly the longer-term trends are relevant for the assessment of 93 

proxy data from speleothems recording decadal or longer variability only.  94 

 This paper documents and discusses observations of precipitation/infiltration and drip 95 

rate as well as atmospheric temperature and the oxygen and hydrogen isotopic composition of 96 

rain-, soil-, and cave dripwater from a seven year-long monitoring campaign in Bunker Cave 97 

in northwestern Germany. The main goals of the present study are: (i) to quantify the longer-98 

term (multi-annual) variability of the environmental parameters; (ii) to assess the response 99 
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time of the carbonate precipitating drip sites to these parameters; (iii) to identify signal 100 

smoothing and possible alteration processes during percolation through the epikarst; and (iv) 101 

to draw, where possible, general implications for speleothem research.  102 

 103 

2. Climate and cave parameters 104 

 105 

 The climate of northwestern Germany is warm-temperate, i.e. fully humid (equally 106 

distributed rainfall amount throughout the year) with warm summers (Kottek et al., 2006). 107 

Bunker Cave is located between the villages of Iserlohn and Letmathe in the Rhenish Slate 108 

Mountains in the NW part of the Sauerland, Germany (Fig. 1). It is part of the Bunker-Emst-109 

Cave system (3.5 km long) with the Bunker Cave entrance (51°22’N, 07°40’E) being located 110 

at 184 m above sea level (asl) on a south-facing hill slope of the Dröscheder Emst karst 111 

plateau (Grebe, 1993; Hammerschmidt et al., 1995).  112 

 The host rock consists of Middle to Upper Devonian massive limestone (von Kamp, 113 

1972). The rock overburden of the cave is between 15 and 30 m (Grebe, 1993) and the host 114 

rock is overlain by ca. 70 cm inceptisol to alfisol (USDA Soil Taxonomy). The colour varies 115 

between dark and yellowish brown (10YR 3/3 and 10YR 5/6) for the upper soil layers and 116 

bright reddish brown to bright brown (5YR 5/8 to 7.5YR 5/8) for the lower layer (Munsell 117 

soil colour charts). The vegetation above the cave consists of deciduous forest (mainly ash 118 

and beech trees) and scrubs (Riechelmann et al., 2011). Bedding dips to the North or 119 

Northwest (von Kamp and Ribbert, 2005) and water percolates mainly along fractures and 120 

bedding planes. This feature and the fact that Bunker Cave is located in a south-facing hill 121 

reduces the effective catchment of the cave dripwater to a few hundred m
2
. Furthermore, the 122 

Dröscheder Emst karst plateau is partly used as a residential area and ca. 15 to 20% of the 123 

catchment area is anthropogenically sealed. Furthermore, a railway route runs above the cave. 124 
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 125 

3. Materials and Methods 126 

 127 

3.1 Monitoring and sample collection of rain-, soil- and dripwater 128 

 129 

 The monitoring programme performed in and above Bunker Cave ran from August 130 

2006 to August 2013. Rainwater samples were collected with a rain gauge according to the 131 

DIN 58666C norm on the roof of the German Cave Museum Iserlohn (51°22’N, 07°38’E; 175 132 

m asl), located 1.5 km from Bunker Cave (Fig. 1). Rainfall amount was measured and 133 

sampled daily and collected as monthly samples between 2007 and 2012. In 2013, rainwater 134 

samples were collected only bimonthly. Rainwater samples were stored in PET bottles in a 135 

fridge to minimize evaporation. 136 

Two soilwater sampling sites were installed above Bunker Cave. The soilwater suction 137 

probes were manufactured by Umwelt-Geräte-Technik GmbH (UGT, Germany). One probe 138 

(BW 1) was installed at a depth of 70 cm and water was sampled monthly between 2007 and 139 

2011. The second probe (BW 2) sampled water at 40 cm depth in monthly intervals between 140 

2009 and 2011. In 2012 and 2013, both soilwater sites were sampled only bimonthly.  141 

In total, five drip sites (TS 1, TS 2, TS 3, TS 5 and TS 8; Fig. 2) were monitored in 142 

Bunker Cave from 2006 to 2013. Sampling at drip site TS 8 started in 2007. Drip sites TS 1 143 

and TS 5 are located in chamber 1. All other sites are located in chamber 2 of Bunker Cave 144 

(Fig. 2). Dripwater samples were integrated over one month in order to obtain sufficient 145 

volumes of water for multi-proxy geochemical analyses. These monthly samples were taken 146 

between 2006 and 2011, while bimonthly samples were taken between 2012 and 2013. An 147 

exception is drip site TS 1, where sufficient water could be collected during each visit. 148 

Dripwater first dripped onto a drip counter placed in a plastic box and was then transferred 149 
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into a closed bottle via tubing to minimize CO2 degassing and potential evaporation. 150 

Comparison of instantaneous and monthly collected water revealed similar 
18

O values, 151 

confirming that fractionation processes due to evaporation are negligible (Riechelmann et al., 152 

2011). For further details of the monitoring, the reader is referred to Riechelmann (2010) and 153 

Riechelmann et al. (2011; 2012a; 2013; 2014). 154 

Drip rates were measured manually with a stopwatch. The following equation was 155 

used to convert drip rate into volumetric discharge (z): 156 

 157 

z [ml/time] = drip rate [drips/time]* V [ml/drips]         (1) 158 

 159 

where V is the volume of each drip. The volume of a drip was determined by a defined 160 

collection time, the total amount of water and the drip rate (in drips per min). In some cases, 161 

the drip rate at site TS 8 was not quantified by means of a stopwatch, and was instead 162 

calculated via the amount of an instantaneous water sample (collected during the monitoring 163 

tour) and the known drip volume (determined as described above). Furthermore, drip rates 164 

were measured automatically by acoustic drip counters (Stalagmate; Mattey and Collister, 165 

2008), which were placed under drip sites TS 2 (2009-2013), TS 3 (2010-2013), TS 5 (2007-166 

2013) and TS 8 (2009-2013). 167 

 168 

3.2 18
O and D of rain-, soil- and dripwater  169 

 170 

The oxygen and hydrogen isotopic compositions of all water samples were determined 171 

at the University of Innsbruck. Water samples were collected in small, airtight glass vials 172 

without headspace. The oxygen isotope composition was analysed using a ThermoFinnigan 173 

DELTA
plus

XL mass spectrometer connected with a Gasbench II using the CO2 equilibrium 174 
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technique. The 1 reproducibility of the 
18

O values is ±0.09 ‰ VSMOW (Spötl et al., 2005). 175 

The hydrogen isotope composition was measured using a ThermoFinnigan 176 

DELTA
plus

Advantage equipped with a TC/EA high-temperature pyrolysis unit. The 1 177 

reproducibility is ±1 ‰ VSMOW. 178 

 179 

3.3 Evapotranspiration and infiltration 180 

 181 

Instrumental climate data of two nearby meteorological stations (Fig. 1) - Hagen-Fley 182 

(51°25’N, 07°29’E; 100 m asl; 2000-2007; www.dwd.de) and Hemer (51°23’N, 07°45’E; 200 183 

m asl; 2008-2013; www.meteomedia.de) - were used to calculate the evapotranspiration after 184 

Haude (1955) using the following equation: 185 

 186 

Epot [mm/day] = x [mm/day * hPa] * P
13

 [hPa] * (1 – (F
13

 [%] / 100))       (2) 187 

 188 

where Epot is the potential evaporation, x represents the monthly coefficient depending on 189 

vegetation, P
13

 is the saturation pressure at 1 p.m. and F
13

 is the relative humidity at 1 p.m.. 190 

The saturation pressure was calculated using the Magnus-formula: 191 

 192 

P
13

 [hPa] = 6.107 [hPa] *10^((7.5 * T
13

 [°C]) / (237 + T
13

 [°C]))        (3) 193 

 194 

T
13

 is the air temperature at 1 p.m.. Equations 2 and 3 were used to calculate the amount of 195 

water which can potentially infiltrate (Infpot) into the soil and thus, into the cave. Therefore, 196 

the following equation was used: 197 

 198 

Infpot [mm/day] = N [mm/day] – Epot [mm/day]          (4) 199 
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 200 

where N is precipitation. The amount of water infiltrating into the soil above Bunker Cave 201 

was determined using precipitation data from the German Cave Museum Iserlohn.  202 

  203 

3.4 GNIP stations 204 

 205 

Data of four nearby GNIP (Global Network of Isotopes in Precipitation; http://www-206 

naweb.iaea.org/napc/ih/IHS_resources_gnip.html) stations were used for comparison with 207 

monitoring and meteorological data. These include Bad Salzuflen (52°06’N, 08°43’E; 100 m 208 

asl), Emmerich (51°49’N, 06°36’E; 43 m asl), Koblenz (50°21’N, 07°34’E; 97 m asl) and 209 

Wasserkuppe Rhön (50°30’N, 09° 57’E; 921 m asl). 210 

 211 

4. Results 212 

 213 

  Seasonally resolved monitoring data of rain-, soil- and dripwater of Bunker Cave were 214 

partly published by Immenhauser et al. (2010), Kluge et al. (2010, 2013), Riechelmann et al. 215 

(2011, 2012a, b, 2013, 2014), Fohlmeister et al. (2012), Münsterer et al. (2012), and 216 

Wackerbarth et al. (2012). In this study, we present monthly data as well as annual mean 217 

values of the relevant parameters, which were calculated using the monthly or bimonthly 218 

values of the respective year to (i) examine long-term variability and (ii) compare these data 219 

with precipitation/infiltration and temperature data to determine the hydraulic response time 220 

and water transfer time. Annual means were obtained from monthly data (January to 221 

December). 222 

 223 

4.1 Precipitation, infiltration, temperature and rainwater 18
O and D 224 
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 225 

For this study, the time period from 2000 to 2013 is considered. Annual mean values 226 

are shown for all years except 2013, since monitoring stopped in August of this year. Hence, 227 

all mean values for 2013 are related to this time interval. Furthermore, annual mean values for 228 

2006 were not calculated, due to insufficient data. The lowest annual precipitation sum (720 229 

mm) was recorded in 2003, without considering 2013 with the lowest precipitation sum of 230 

447 mm. The highest annual rainfall (1202 mm) and the highest mean annual infiltration (546 231 

mm) occurred in 2007 (Fig. 3A). The lowest annual mean infiltration was observed in 2003 (-232 

171 mm). Infiltration at Bunker Cave is lower during summer months than during winter 233 

(Riechelmann et al., 2011). Monthly temperature data show low values in winter and high 234 

ones during summer. The lowest mean annual air temperature (7.1°C) was observed in 2010, 235 

while the highest (11.3°C) was observed twice, in 2000 and 2007 (Fig. 3A). 236 

Oxygen and hydrogen isotope values of monthly rainwater samples display a seasonal 237 

variability with higher values during summer and lower ones during winter months (Fig. 3B). 238 

In the years 2010 and 2013, the lowest mean annual 
18

O and D values of rainwater were 239 

observed (
18

O: -9.20 and -9.01‰; D: -66.2 and -62.5‰), while the highest mean annual 240 

values were observed in 2011 (
18

O: -5.92‰; D: -45.8‰; Fig. 3B). Monthly
18

O and D 241 

values of rainwater are highly correlated (r = 0.98, p < 0.001; n = 65; see also Fig. 4C).  242 

Since monthly rainwater samples collected during the monitoring do not cover the 243 

same time period as the monthly samples from the GNIP stations, mean annual values are 244 

used here for comparison. Mean annual oxygen and hydrogen isotope values of rainwater 245 

collected at the German Cave Museum correlate well with those of nearby GNIP stations 246 

(Figs. 4A, B). The Local Meteoric Water Line (LMWL) of the rainwater (Fig. 4C) is close to 247 

that of the GNIP station Bad Salzuflen (D = 7.72 * 
18

O + 5.7; r = 0.98; Stumpp et al., 248 

2014). Thus, rainwater collected during the monitoring period reflects the climate conditions 249 
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of western Germany. The slope of 7.72 is close to that of the Global Meteoric Water Line (8), 250 

indicating insignificant evaporation of the collected samples (Gat et al., 2000). Since all 251 

dripwater data plot on the LMWL (Fig. 4C) evaporation in the soil, epikarst and cave 252 

generates no significant imprint on their corresponding isotope values. Furthermore, both 253 

isotope systems depend on the regional surface air temperature and the isotopic composition 254 

of Bunker Cave dripwater reflects the infiltration weighted mean annual 
18

O and D values 255 

of rainwater (Riechelmann et al., 2011).  256 

 257 

4.2 Drip rate 258 

 259 

Due to different drip characteristics of the different drip sites (ranging from seepage 260 

flow to seasonal drip; Riechelmann et al., 2011; Appendix S1 and Fig. 8), annual mean drip 261 

rates were calculated and their long-term variability compared. Both manually and 262 

automatically obtained mean annual drip rates show the same trends (Fig. 5). Sites TS 1, TS 2 263 

and TS 5 show a decreasing trend in mean drip rates over the monitoring period, which is also 264 

reflected in cross-correlations of mean annual drip rates at these sites (TS 1 vs. TS 2: r = 0.82; 265 

TS 1 vs. TS 5: r = 0.85; TS 2 vs. TS 5: r = 0.88; pall  ≤ 0.02, nall = 7). The annual mean drip 266 

rate at site TS 3 correlates only with the annual mean drip rate at site TS 2 within the 95% 267 

confidence level (r = 0.81) and with TS 1 (r = 0.79) and TS 5 (r = 0.72) just below the 95% 268 

confidence level (nall = 6). However, it can be assumed that the annual mean drip rate at site 269 

TS 3 follows the same trend as sites TS 1, 2 and 5. At drip site TS 8 a similar annual mean 270 

drip rate was observed in 2008 and 2009 before drip rates increased until 2011, followed by a 271 

decreasing trend. Drip rate of drip site TS 8 does not show any significant correlation with 272 

any other drip rate.  273 

 274 
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4.3 18
O and D of soil- and dripwater 275 

 276 

Seasonal trends are difficult to identify for soilwater, because of lack of data (no 277 

water), especially summer months. An exception is soilwater at site BW 1 which yielded a 278 

complete time series from 2007 to 2008. There, higher 
18

O and D values occur during 279 

summer/autumn months, while lower values are observed in winter/spring months (Fig. 6). 280 

The lowest mean annual 
18

O and D values occurred in 2010 and 2011 for both soilwaters, 281 

while the highest values are shown in 2007 and 2008 (Fig. 6). Monthly 
18

OBW1 values are 282 

significantly correlated with 
18

OBW2 values (Table 1). The same can be observed for D 283 

(Table 2).  284 

Seasonal trends in 
18

O and D of dripwaters are minor, but most pronounced for 285 

water at site TS 1. In general, lower isotope values occur in summer, while higher values are 286 

observed in winter (Fig. 6). Correlations between 
18

O and D values of monthly samples of 287 

the same site are significant for all dripwaters and both soilwater samples (r ≥ 0.44; p < 0.001; 288 

n ≥ 21). All dripwaters share similarities in their oxygen and hydrogen isotopic composition 289 

as shown by positive cross-correlations (Tables 1 and 2). Mean annual values display the 290 

overall trend for 
18

O and D, which is similar for all drip sites considering the errors (Fig. 6). 291 

Oxygen and hydrogen isotope values increased until 2009, reached a plateau and decreased 292 

around 2012. This trend is less distinct for dripwater at site TS 8 (Fig. 6). 293 

  294 

5. Interpretation and Discussion 295 

 296 

5.1 Constraints on the hydraulic response time 297 

 298 
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The positive correlations of mean annual drip rates of all sites except TS 8 (Fig. 5) 299 

suggests that: (i) these sites are characterized by similar hydrological properties (Baker et al., 300 

1997), and (ii) the drip rates of these sites most likely respond to the same environmental 301 

(climate) forcing. According to Riechelmann et al. (2011), no drip site showed a direct 302 

response to rainfall events, but rather a lagged response of up to several months due to slowly 303 

increasing hydrological pressure in the karst reservoir above the cave. Correlations between 304 

drip rates and precipitation and infiltration during the preceding years based on monitoring 305 

and meteorological data of the stations Hagen-Fley and Hemer were used to determine the 306 

response time of mean annual drip rates to mean annual precipitation and infiltration. The 307 

correlation coefficients (r) between drip rate and infiltration show that the mean annual drip 308 

rates at TS 1 and TS 3 are controlled by mean annual infiltration of the same year, as observed 309 

for other cave systems (Fig. 7A; Genty and Deflandre, 1998; Baker et al., 2000; Miorandi et 310 

al., 2010; Tremaine and Froelich, 2013). Correlation coefficients at drip sites TS 2 and 5 are 311 

close to the 95% confidence level. Since the infiltration amount is controlled by precipitation 312 

amount and temperature (water loss due to evapotranspiration), correlations between mean 313 

annual drip rate and annual precipitation amount were calculated (Fig. 7B). Positive 314 

correlations at the 95% confidence level were found for TS 2 and TS 3 for the same year 315 

interval, while correlation coefficients of TS 1 and 5 are just below the 95% confidence level. 316 

Several sources of error must be considered, however, which lead to a lack of correlation at 317 

the 95% confidence level. Lack of data (< 12 for annual means) may be the problem in case of 318 

drip site TS 5, since neither infiltration nor precipitation correlate at the 95% confidence level 319 

with drip rate. This might also be the case for sites TS 1 and 2. The calculated mean annual 320 

drip rate of the former might be biased, since it shows pronounced seasonal drip rate 321 

variability, with most changes not being covered by the monitoring (Figs. 5 and S1 in 322 

supplementary material). Finally, the calculated mean annual infiltration in the soil reflects 323 



14 

 

the potential rather than effective infiltration. Furthermore, it must be kept in mind that 324 

effective infiltration is biased towards winter (Wackerbarth et al., 2010; Riechelmann et al., 325 

2011), which might affect the correlation.  326 

A decrease of the drip rate was already observed for two other drip sites and TS 2 in 327 

Bunker Cave for the first three years as reported in Riechelmann et al. (2011). As shown here, 328 

this trend continued (Fig. 5), i.e. the reservoir was drained further during the seven years. This 329 

might be due to relatively dry years with low infiltration at the beginning of the century. The 330 

following years (2007 to 2010) with higher infiltration most likely did not fill the reservoir 331 

sufficiently to stop the draining and afterwards infiltration decreased again (2011 to 2013; 332 

Fig. 3A). 333 

 The mean annual drip rate at site TS 8 shows a significant positive correlation with 334 

mean annual infiltration with a lag of three years, but no significant correlation near the 95% 335 

confidence level with precipitation. Drip site TS 8 is the only site, whose drip rate does not 336 

show the same trends as the other sites and also lacks a correlation with infiltration and 337 

precipitation for the interval recorded by the other drip sites. This absence of any correlation 338 

might be due to a change in drip behaviour during the monitoring period. 339 

The drip characteristics of all drip sites, plotted according to Smart and Friederich 340 

(1987) and Baker et al. (1997; see Figs. 8 and S1 in supplementary material to this paper) 341 

highlight minor variability, with more or less the same drip characteristics over time. Drip 342 

behaviour changed drastically at TS 8 during the monitoring period (Fig. 8): while seasonal 343 

drip characteristics prevailed in 2008 and 2009, this drip shows seepage flow behaviour 344 

between 2010 and 2012. Possible reasons for this change in drip characteristics include: (i) the 345 

flow paths and the reservoir behaviour in the epikarst underwent changes as a result of 346 

strongly variable rainfall events (Tooth and Fairchild, 2003), (ii) the flow paths of percolating 347 

water changed or became blocked due to prior calcite precipitation (PCP; Fairchild et al., 348 
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2006) occluding the flow paths of water; (iii) the overhanging stalactite was broken off 349 

(earthquake, human interference etc.) resulting in drip parameter changes (Baldini et al., 350 

2006). Amongst these scenarios, it is conceivable that rainfall filled the reservoir feeding TS 8 351 

to a threshold resulting in a more continuous water flow into the cave. PCP is a more likely 352 

explanation for the change in drip behaviour as documented for this site (Riechelmann et al., 353 

2011). The stalactite was removed in June 2008, but the change in drip rate lagged by one 354 

year, suggesting that the drip pattern was not controlled by the stalactite and thus the third 355 

option mentioned above is considered unlikely. Concluding, the drip rate at site TS 8 is 356 

controlled by infiltration and hence rainfall, but the dripwater signal reflecting both of these 357 

parameters is strongly affected by prior calcite precipitation in the aquifer. Although the 358 

catchment of the cave is partly sealed, infiltration and thus the precipitation signal can still be 359 

recognized in the drip rate.  360 

 361 

5.2 Constraints on the water transfer time 362 

 363 

Water transfer times from the surface to the cave are highly variable and range from 364 

days to several years not only for different caves but also for different drip sites in a given 365 

cave (e.g., Kaufmann et al., 2003; Mattey et al., 2008b, Lambert and Aharon, 2010; Treble et 366 

al., 2013; Genty et al., 2014, Breitenbach et al., 2015). Here, the dependency of rainwater 367 


18

O and D on temperature (
18

O versus T: r = 0.73; D versus T: r = 0.68; nboth = 67; pboth < 368 

0.001; Riechelmann et al., 2011) is used to quantify the water transfer time. Correlation 369 

coefficients (r) between 
18

O and D of soil- and dripwater with surface air temperature were 370 

calculated using data of the meteorological stations Hagen-Fley and Hemer. To this end, 371 

monitoring data were correlated with temperature data of preceding years. Since rainwater 372 



16 

 


18

O and D values correlate positively with temperature, only positive correlations are 373 

relevant to determine the water transfer time. 374 

Monthly 
18

O and D values of soilwater site BW 1 at 70 cm correlate significantly 375 

with the atmospheric temperature with a lag of four months (Fig. 9). In case of soilwater site 376 

BW 2 a significant correlation was found using a three months lag (40 cm; Fig. 9). However, 377 

gaps in the monthly soilwater data during dry summer months limit the significance of these 378 

calculations and they should therefore be treated with caution. Thus, this is also resulting in 379 

other highly significant correlations at 63 months lag time in case of BW 2. Since 
18

O and 380 

D values of soilwater correlate significantly with atmospheric temperature at both sites, and 381 

monthly
18

O and D values also correlate for both soilwater sites, we conclude that water 382 

isotopes are not or only slightly altered by processes in the soil zone such as evaporation and 383 

uptake of biogenic CO2 into the water (e.g., Lachniet, 2009). Thus, the temperature 384 

dependency of rainwater is preserved in the 
18

O and D values of soilwater above Bunker 385 

Cave. 386 

Because dripwater at site TS 1 was collected as an instantaneous sample, the 
18

O and 387 

D values are not representative for the whole month as is the case for the other dripwaters. 388 

Therefore, calculations with monthly data were only performed for all other drip sites 389 

resulting in a lag of 29 to 31 months (Fig. 10). Difficulties occurred for TS 2, TS 3, and TS 8 390 

in case of correlations using 
18

O. There, the highest correlations are found between 41 and 391 

66 months and only slightly lower ones are observed for a lag of 29 to 31 months. 392 

Calculations using D of all drip sites except TS 2 and 
18

O for TS 5 do not show these 393 

features, which are most likely due to different mixing of the younger and older water in the 394 

reservoir as a consequence of different transfer times. Variability in the transfer times 395 

between different drip sites may arise due to: (i) variable thickness of the soil layer above 396 
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Bunker Cave, and (ii) differential thickness of the host rock overlying the cave, as well as (iii) 397 

differential lengths and types of individual flow paths (e.g., Tooth and Fairchild, 2003). The 398 

water retention capacity of soil is another factor that may or may not lead to an admixture 399 

waters with different residence time in the soil and epikarst zone (Hölting and Coldewey, 400 

2013). Following dry periods, the portion of older water in the soil increases (Kottek et al., 401 

2006) and the opposite is found during more humid periods. Although, rainfall is equally 402 

distributed throughout the year, infiltration is not, as it is lower during summer than during 403 

winter months (Wackerbarth et al., 2010; Riechelmann et al., 2011). Thus, water retention 404 

capacity might have a small effect on water transfer times at Bunker Cave sulphate and nitrate 405 

data show that dripwaters at sites TS 1 and TS 5 have shorter residence times compared to 406 

sites TS 2, 3, and 8 (Riechelmann et al., 2011). This might explain why both 
18

O and D 407 

correlations with temperature performed well for TS 5. Drip water at TS 2 appears to be the 408 

site with the longest and strongest buffering in the epikarst zone. In contrast to most others 409 

this site displays seepage flow characteristics (see Appendix S1) and the oldest age based on 410 

tritium data (Riechelmann et al., 2012a). This pattern might explain why the correlations at 411 

this site are weakest. However, the shift in correlations using D compared to the other drip 412 

sites (Fig. 10) remains insufficiently explained. Since 
18

O and D values of dripwater at site 413 

TS 1 correlate with those of all other drip sites it can be assumed that the TS 1 water has a 414 

similar transfer time of 29 to 31 months.  415 

The results shown here suggest that the dripwater transfer time at all monitored drip 416 

sites in Bunker Cave ranges between 29 to 31 months (ca. 2.5 years). This is in good 417 

agreement with tritium data, suggesting a transfer time of 2-4 years (±1 year; Kluge et al., 418 

2010). The tritium-based estimates, however, represent mixing ages of younger infiltrating 419 

water and older water of the epikarst reservoir (Kluge et al., 2010; Riechelmann et al., 2012a). 420 
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Based on the fact that all dripwaters plot on the LMWL, alteration of 
18

O and D values are 421 

excluded and hence, both retain the temperature signal of rainwater.  422 

Summing up, the multi-annual monitoring programme at Bunker Cave sheds light on 423 

the complex processes affecting water transfer times. Obviously, a short-term monitoring 424 

program would fail to resolve these patterns.  425 

 426 

5.3 Influence of the North Atlantic Oscillation on the climate in western Germany 427 

 428 

 The North Atlantic Oscillation (NAO) regulates Northern Hemisphere climate 429 

variability and particularly so in western Europe and eastern North America (e.g., Marshall et 430 

al., 2001; Visbeck et al., 2001; Baldini et al., 2008; Hurrell and Deser, 2010; Langebroek et 431 

al., 2011; Pinto and Raible, 2012; Trouet et al., 2012; Wassenburg et al., 2013, 2016; Comas-432 

Bru et al., 2013). The NAO index is defined as the difference of sea-level pressure between 433 

the Icelandic Low and the Azores High (Hurrell, 1995; Wanner et al., 2001). While the sea-434 

level pressure pattern is present throughout the year, it is most pronounced during winter 435 

(Wanner et al., 2001; Pinto and Raible, 2012). Thus, most often the winter (December to 436 

March) NAO index is used when studying climatic variability in the North Atlantic realm 437 

(Proctor et al., 2000; Trouet et al., 2009; Baker et al., 2015). During a negative NAO mode, 438 

the winter in Europe is dominated by cold and dry conditions, while during a positive NAO 439 

mode, mild and humid conditions prevail (Fig. 11A; Hurrell and van Loon, 1997; Marshall et 440 

al., 2001). This NAO-temperature link is reflected in 
18

O of precipitation (Baldini et al., 441 

2008; Mischel et al., 2015; Comas-Bru et al., 2016) and thus can be reconstructed using 442 

suitably sensitive speleothems. 443 

 To quantify the effect of the NAO on regional weather and climate, precipitation and 444 

temperature records of the GNIP stations Bad Salzuflen, Emmerich, Koblenz, Wasserkuppe 445 
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Rhön, and the meteorological stations Hagen-Fley and Hemer were averaged for the months 446 

December to March. December-March average NAO index values (NAODJFM) were 447 

calculated using data provided by the Koninklijk Nederlands Meteorologisch Instituut 448 

(KNMI; http://www.knmi.nl/). Both precipitation amount (r ≥ 0.36, p ≤ 0.05, n ≥ 19, except 449 

Hemer) and temperature (r ≥ 0.58, p ≤ 0.03, n ≥ 5; except Wasserkuppe/Rhön) correlate 450 

significantly with the NAODJFM for most stations (Fig. 11). Thus, precipitation amount and 451 

temperature above Bunker Cave are affected by the NAO during winter months. Since both 452 

parameters are imprinted on drip rate and the dripwater isotope composition, it is possible to 453 

reconstruct NAO variability using proxy time-series from speleothems of Bunker Cave. As 454 

the precipitation in this region is equally distributed throughout the year, substantial summer 455 

precipitation between April to November – despite evapotranspiration – may weaken the 456 

imprint of the winter NAO signal on speleothems (Mischel et al., 2015). However, studies by 457 

Baldini et al. (2008) and Comas-Bru et al. (2016) show that many Central European regions 458 

are sensitive to reconstruct NAO variability. A moderate connection between 
18

O and NAO 459 

variability has also been detected for Herbstlabyrinth-Adventshöhle in Central Germany 460 

(Mischel et al., 2015), supporting the notion that speleothems from these caves record NAO 461 

variability.  462 

With short residence times of <3 years and limited signal smoothing in the overlying 463 

epikarst, Bunker Cave proves to be a sensitive site for high-resolution proxy reconstructions 464 

of past climate dynamics under the influence of North Atlantic atmospheric circulation. The 465 

links between Bunker Cave hydrology and the NAO found in this study are consistent with 466 

the interpretation brought forward by previous workers (Fohlmeister et al., 2012; Wassenburg 467 

et al., 2016). 468 

 469 

5.4 Wider implications of the present data set for speleothem research in general 470 
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 471 

In case of Bunker Cave, Mg/Ca ratios as well as 
13

C values depend on drip rate and 472 

thus, on precipitation and infiltration amount (Riechelmann et al., 2011, 2013; Fohlmeister et 473 

al., 2012). Therefore, both proxies are well-suited for reconstructions of precipitation and 474 

NAO variability. 475 

Disentangling air temperature based on speleothem 
18

O is a more complex task. 476 

There is a clear temperature signal in dripwater 
18

O of all drip sites. This temperature signal 477 

of speleothem 
18

O, however, is altered by (drip rate-related) fractionation processes during 478 

calcite precipitation in the cave (Riechelmann et al., 2013). In the case of speleothem
18

O in 479 

Bunker Cave, variations in both parameters (precipitation and temperature) are recorded 480 

(Fohlmeister et al., 2012). A proxy not recorded in speleothem calcite but in dripwater is D 481 

showing a well-defined temperature signal. Fluid inclusions extracted from speleothems could 482 

be used to quantify D and 
18

O of the original dripwater and to constrain past temperature 483 

changes (McGarry et al., 2004; van Breukelen et al., 2008; Affolter et al., 2015). Given that 484 

the temperature pattern is unaltered in dripwater 
18

O, fluid inclusions 
18

O and D analyses 485 

should allow for the reconstruction of past temperature variability from speleothems in 486 

Bunker Cave and thus, variations of NAO strength.  487 

The most striking observation of the present study is the difference between hydraulic 488 

response time, i.e. immediate drip rate response (<1 year; Fig. 7), and the transfer time of 489 

water from the soil to the cave (ca. 2.5 years; Fig. 10). While drip rate response to annual 490 

precipitation occurs without significant lag on (sub-)annual basis, the temperature signal is 491 

delayed by up to 2.5 years. Thus, the precipitation and temperature signals recorded by 492 

different proxies in speleothems are not fully synchronous. In case of Bunker Cave this delay 493 

is negligible, because here speleothems record proxies on decadal rather than annual or 494 
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seasonal scales (Riechelmann et al., 2011; Fohlmeister et al., 2012). Such proxy biases to 495 

either water transfer or hydraulic response time must be considered in (sub-)annual 496 

reconstructions, and where the signal transfer times for both parameters differ. 497 

 498 

6. Conclusions 499 

 500 

 The seven year-long monitoring of hydrological parameters in and above Bunker 501 

Cave, NW Germany, provides unprecedented insights into processes influencing 
18

O and D 502 

in dripwater and speleothems that cannot be resolved with shorter-term monitoring 503 

programmes. The results of this study aim at quantifying the most relevant processes that may 504 

alter isotope proxies in Bunker Cave speleothems over time scales of several years: 505 

1. Inter-annual drip rate dynamics are controlled by annual infiltration and thus, annual 506 

precipitation. No lag of the hydraulic response time is observed at annual resolution. 507 

2. Water transfer time is 3 months for a 40 cm-thick soil layer and 4 months for a 70 cm-thick 508 

soil. It takes approximately 2.5 years for meteoric water to reach the cave chambers. 509 

3. Neither oxygen nor hydrogen isotopes of dripwaters are altered and hence, record the 510 

temperature signal of meteoric precipitation. As a consequence, 
18

O and D from fluid 511 

inclusions in speleothems are genuine temperature proxies at this site. 512 

4. Temperature and precipitation during winter months (December-March) are significantly 513 

influenced by the NAO. Hence, long-term NAO variations are recorded in speleothems 514 

from northwestern Germany. 515 

5. Monitoring data reveal a difference between the hydraulic response time and the water 516 

transfer time. This, however, does not affect the proxy interpretation of speleothems from 517 

this cave, because of their slow growth rate. But, with regard to other caves, especially 518 
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with seasonally to annually resolved speleothems, this time offset may lead to difficulties 519 

regarding the interpretation of various proxy data. 520 

6. This study provides insights into multi-annual processes operating in cave depositional 521 

environments that are of relevance in speleothem research and can serve as a template for 522 

other cave monitoring programmes. 523 
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Figure Captions 784 

 785 

Fig. 1 Geological map of the northern Rhenish Slate Mountains in northwestern Germany. 786 

Locations of Bunker Cave, German Cave Museum Iserlohn and the meteorological stations 787 

(MS) Hagen-Fley and Hemer are shown (modified after Riechelmann et al., 2011). 788 

 789 
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Fig. 2 Plan view of Bunker Cave with the locations of drip sites TS 1 and TS 5 in chamber 1 790 

and TS 2, TS 3 and TS 8 in chamber 2 (modified after Scheudoschi and Hasenkamp in 791 

Scheudoschi, 2007). 792 

 793 

Fig. 3 Monthly values of temperature as well as rainwater oxygen and hydrogen isotope data 794 

and mean annual values of precipitation, infiltration, temperature as well as rainwater oxygen 795 

and hydrogen isotope data. A) Precipitation data from 2000 to 2006 of the meteorological 796 

station (MS) Hagen-Fley and data from 2007 to 2013 measured during this study at the 797 

German Cave Museum Iserlohn. Temperature data from 2000 to 2007 were provided by the 798 

MS Hagen-Fley and 2008 to 2013 by the MS Hemer. Infiltration data are calculated using 799 

data of both meteorological stations. B) Rainwater oxygen and hydrogen isotope data 800 

measured from the rain sampled at the German Cave Museum Iserlohn. 801 

 802 

Fig. 4 A) Comparison of mean annual oxygen isotope data of four GNIP stations with 803 

rainwater data collected during this study. B) Comparison of mean annual hydrogen isotope 804 

data of four GNIP stations with rainwater data collected in this study. C) Local meteoric water 805 

line (LMWL) of the rainwater and position of the dripwaters on the LMWL (small box). 806 

 807 

Fig. 5 Mean annual drip rates in Bunker Cave. Both manual and automatic drip rate data are 808 

shown. 809 

 810 

Fig. 6 Monthly and mean annual oxygen and hydrogen isotope data of soil- and dripwaters. 811 

 812 
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Fig. 7 A) Correlation coefficients between mean annual drip rate and annual infiltration. B) 813 

Correlation coefficients of mean annual drip rate with annual precipitation. Note the offset to 814 

obtain the hydraulic response time of the reservoir to precipitation and infiltration. 815 

 816 

Fig. 8 Drip characteristics of drip site TS 8 according to Smart and Friederich (1987) and 817 

Baker et al. (1997). Data from 2013 are not displayed as they do not cover the whole year. 818 

 819 

Fig. 9 Correlation coefficients of monthly 
18

O and D values with atmospheric temperature 820 

for both soilwater sites BW 1 and BW 2. 821 

 822 

Fig. 10 Correlation coefficients between the monthly 
18

O and D values of all dripwaters and 823 

atmospheric temperature.  824 

 825 

Fig. 11 A) NAO index for December to March calculated for the period 1975-2013 826 

(http://www.knmi.nl/). B) Precipitation data of the GNIP and meteorological stations for 827 

December to March for the period 1975-2013. C) Temperature data of the GNIP and 828 

meteorological stations for December to March for the period 1978-2013.  829 
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ABSTRACT 26 

The last two decades have seen a considerable increase in studies using speleothems as 27 

archives of past climate variability. Caves under study are now monitored for a wide range of 28 

environmental parameters and results placed in context with speleothem data. The present 29 

study investigates trends from a seven year long monitoring of Bunker Cave, western 30 

Germany, in order to assess the hydraulic response and transfer time of meteoric water from 31 

the surface to the cave. Rain-, soil-, and dripwater were collected from August 2006 to August 32 

2013 at a monthly to bimonthly resolution and their oxygen and hydrogen isotope 33 

composition was measured. Furthermore, drip rates were quantified. Due to different drip 34 

characteristics, annual mean values were calculated for the drip rates of each drip site. 35 

Correlations of the annual mean drip rate of each site with precipitation and infiltration 36 

demonstrate that the annual infiltration, and thus the annual precipitation control the inter-37 

annual drip-rate variability for all except one site. The hydraulic response is not delayed. All 38 

drip sites display identical long-term trends, which suggests a draining of a common karst 39 

reservoir over these seven years of monitoring. Correlations of soil- and dripwater monthly 40 


18

O and D values with atmospheric temperature data reveal water transfer times of 3 41 

months for soilwater at site BW 2 (40 cm depth) and 4 months for 70 cm depth (soilwater at 42 

site BW 1). Finally, the water reaches the cave chambers (15 to 30 m below land surface) 43 

after ca. 2.5 years. Consequently, a temporal offset of 29 to 31 months (ca. 2.5 years) between 44 

the hydraulic response time (no time lag on annual basis) and the water transfer time (time lag 45 

of 29 to 31 months) was found, which is negligible with regard to Bunker Cave speleothems 46 

because of their slow growth rates. Variations in drip rate and thus, precipitation and 47 

infiltration are recorded by 
13

C and Mg/Ca ratios in speleothem calcite. Speleothem 
18

O 48 

values reflect both temperature and precipitation signals due to drip rate-related fractionation 49 

processes. We document that long-term patterns in temperature and precipitation are recorded 50 
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in dripwater patterns of Bunker Cave and that these are linked to the North Atlantic 51 

Oscillation (NAO).  52 

 53 

1. Introduction 54 

 55 

Palaeoclimate reconstructions based on speleothems, i.e. mostly carbonate deposits 56 

formed in caves, have increased significantly during the last two decades (for a summary, see 57 

Fairchild and Baker, 2012). The most important strengths of speleothems are the precise 58 

230
Th/U dating (e.g., Dorale et al., 2004; Scholz and Hoffmann, 2008; Cheng et al., 2013) and 59 

the availability of several, mostly geochemical, parameters such as carbon and oxygen isotope 60 

values, major and trace elemental abundances, and 
18

O and D of fluid inclusions (e.g., 61 

Niggemann et al., 2003; Mangini et al., 2005; Vonhof et al., 2006; Fohlmeister et al., 2012; 62 

Scholz et al., 2012; Luetscher et al., 2015). These can be used for single- or multi-proxy 63 

approaches to reconstruct past climate dynamics.  64 

In order to gain a better understanding of the processes influencing geochemical 65 

proxies in the soil and epikarst zone, as well as processes acting during deposition of 66 

speleothems, sophisticated monitoring programmes have been established (e.g., Spötl et al., 67 

2005; Mattey et al., 2008b, 2016; Riechelmann et al., 2011, Wassenburg et al., 2013; Genty et 68 

al., 2014; van Rampelbergh et al., 2014, Breitenbach et al., 2015; Treble et al., 2016). In the 69 

context of these efforts, cave air temperature, pCO2 and humidity, drip rate, as well as the 70 

isotopic composition of rain-, soil- and dripwater and the element concentrations of soil-, and 71 

dripwater have been recorded. Furthermore, in order to link the dripwater with speleothems 72 

used for palaeoclimate reconstructions, recent cave carbonate precipitates have been 73 

investigated in combination with their respective dripwater composition and the hydraulic 74 
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regime in the cave (e.g., Miorandi et al., 2010; Tremaine et al., 2011; Riechelmann et al., 75 

2013, 2014). 76 

Most monitoring studies focused on seasonal variations of the above-mentioned 77 

parameters, whereby, for example, the drip rate was analysed to study the response to rainfall 78 

events or the hydrological connection of the drip sites (Baker et al., 1997; Mattey et al., 79 

2008b; Riechelmann et al., 2011). The analysis of dripwater 
18

O and D values shows either 80 

seasonal variations (Mattey et al., 2008a, Breitenbach et al., 2015) or rather stable values 81 

close to the annual mean of rainwater (Riechelmann et al., 2011; van Rampelbergh et al., 82 

2014). Seasonal variations in cave dripwater reflect a fast transfer of the water (e.g., 83 

Breitenbach et al., 2015). The lack of an intra-annual pattern points to strong mixing in the 84 

epikarst and/or the vadose zone with transfer times between the soil and the cave drip site in 85 

excess of one year (e.g., Riechelmann et al., 2011; van Rampelbergh et al., 2014). Financial 86 

constraints, accessibility, or lack in manpower commonly limit monitoring studies to 87 

durations of a few years or less. Thus far, only a very limited number of studies focused on 88 

multi-annual trends of the monitored parameters and implications for speleothem research 89 

(Genty and Deflandre, 1998; Treble et al., 2013; Genty et al., 2014, Breitenbach et al., 2015; 90 

Mattey et al., 2016). To the knowledge of the authors, only the study by Genty et al. (2014) 91 

detrended the seasonal signal in order to gain insights in potential longer-term (> 5yrs) trends. 92 

This is of significance as particularly the longer-term trends are relevant for the assessment of 93 

proxy data from speleothems recording decadal or longer variability only.  94 

 This paper documents and discusses observations of precipitation/infiltration and drip 95 

rate as well as atmospheric temperature and the oxygen and hydrogen isotopic composition of 96 

rain-, soil-, and cave dripwater from a seven year-long monitoring campaign in Bunker Cave 97 

in northwestern Germany. The main goals of the present study are: (i) to quantify the longer-98 

term (multi-annual) variability of the environmental parameters; (ii) to assess the response 99 
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time of the carbonate precipitating drip sites to these parameters; (iii) to identify signal 100 

smoothing and possible alteration processes during percolation through the epikarst; and (iv) 101 

to draw, where possible, general implications for speleothem research.  102 

 103 

2. Climate and cave parameters 104 

 105 

 The climate of northwestern Germany is warm-temperate, i.e. fully humid (equally 106 

distributed rainfall amount throughout the year) with warm summers (Kottek et al., 2006). 107 

Bunker Cave is located between the villages of Iserlohn and Letmathe in the Rhenish Slate 108 

Mountains in the NW part of the Sauerland, Germany (Fig. 1). It is part of the Bunker-Emst-109 

Cave system (3.5 km long) with the Bunker Cave entrance (51°22’N, 07°40’E) being located 110 

at 184 m above sea level (asl) on a south-facing hill slope of the Dröscheder Emst karst 111 

plateau (Grebe, 1993; Hammerschmidt et al., 1995).  112 

 The host rock consists of Middle to Upper Devonian massive limestone (von Kamp, 113 

1972). The rock overburden of the cave is between 15 and 30 m (Grebe, 1993) and the host 114 

rock is overlain by ca. 70 cm inceptisol to alfisol (USDA Soil Taxonomy). The colour varies 115 

between dark and yellowish brown (10YR 3/3 and 10YR 5/6) for the upper soil layers and 116 

bright reddish brown to bright brown (5YR 5/8 to 7.5YR 5/8) for the lower layer (Munsell 117 

soil colour charts). The vegetation above the cave consists of deciduous forest (mainly ash 118 

and beech trees) and scrubs (Riechelmann et al., 2011). Bedding dips to the North or 119 

Northwest (von Kamp and Ribbert, 2005) and water percolates mainly along fractures and 120 

bedding planes. This feature and the fact that Bunker Cave is located in a south-facing hill 121 

reduces the effective catchment of the cave dripwater to a few hundred m
2
. Furthermore, the 122 

Dröscheder Emst karst plateau is partly used as a residential area and ca. 15 to 20% of the 123 

catchment area is anthropogenically sealed. Furthermore, a railway route runs above the cave. 124 
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 125 

3. Materials and Methods 126 

 127 

3.1 Monitoring and sample collection of rain-, soil- and dripwater 128 

 129 

 The monitoring programme performed in and above Bunker Cave ran from August 130 

2006 to August 2013. Rainwater samples were collected with a rain gauge according to the 131 

DIN 58666C norm on the roof of the German Cave Museum Iserlohn (51°22’N, 07°38’E; 175 132 

m asl), located 1.5 km from Bunker Cave (Fig. 1). Rainfall amount was measured and 133 

sampled daily and collected as monthly samples between 2007 and 2012. In 2013, rainwater 134 

samples were collected only bimonthly. Rainwater samples were stored in PET bottles in a 135 

fridge to minimize evaporation. 136 

Two soilwater sampling sites were installed above Bunker Cave. The soilwater suction 137 

probes were manufactured by Umwelt-Geräte-Technik GmbH (UGT, Germany). One probe 138 

(BW 1) was installed at a depth of 70 cm and water was sampled monthly between 2007 and 139 

2011. The second probe (BW 2) sampled water at 40 cm depth in monthly intervals between 140 

2009 and 2011. In 2012 and 2013, both soilwater sites were sampled only bimonthly.  141 

In total, five drip sites (TS 1, TS 2, TS 3, TS 5 and TS 8; Fig. 2) were monitored in 142 

Bunker Cave from 2006 to 2013. Sampling at drip site TS 8 started in 2007. Drip sites TS 1 143 

and TS 5 are located in chamber 1. All other sites are located in chamber 2 of Bunker Cave 144 

(Fig. 2). Dripwater samples were integrated over one month in order to obtain sufficient 145 

volumes of water for multi-proxy geochemical analyses. These monthly samples were taken 146 

between 2006 and 2011, while bimonthly samples were taken between 2012 and 2013. An 147 

exception is drip site TS 1, where sufficient water could be collected during each visit. 148 

Dripwater first dripped onto a drip counter placed in a plastic box and was then transferred 149 
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into a closed bottle via tubing to minimize CO2 degassing and potential evaporation. 150 

Comparison of instantaneous and monthly collected water revealed similar 
18

O values, 151 

confirming that fractionation processes due to evaporation are negligible (Riechelmann et al., 152 

2011). For further details of the monitoring, the reader is referred to Riechelmann (2010) and 153 

Riechelmann et al. (2011; 2012a; 2013; 2014). 154 

Drip rates were measured manually with a stopwatch. The following equation was 155 

used to convert drip rate into volumetric discharge (z): 156 

 157 

z [ml/time] = drip rate [drips/time]* V [ml/drips]         (1) 158 

 159 

where V is the volume of each drip. The volume of a drip was determined by a defined 160 

collection time, the total amount of water and the drip rate (in drips per min). In some cases, 161 

the drip rate at site TS 8 was not quantified by means of a stopwatch, and was instead 162 

calculated via the amount of an instantaneous water sample (collected during the monitoring 163 

tour) and the known drip volume (determined as described above). Furthermore, drip rates 164 

were measured automatically by acoustic drip counters (Stalagmate; Mattey and Collister, 165 

2008), which were placed under drip sites TS 2 (2009-2013), TS 3 (2010-2013), TS 5 (2007-166 

2013) and TS 8 (2009-2013). 167 

 168 

3.2 18
O and D of rain-, soil- and dripwater  169 

 170 

The oxygen and hydrogen isotopic compositions of all water samples were determined 171 

at the University of Innsbruck. Water samples were collected in small, airtight glass vials 172 

without headspace. The oxygen isotope composition was analysed using a ThermoFinnigan 173 

DELTA
plus

XL mass spectrometer connected with a Gasbench II using the CO2 equilibrium 174 
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technique. The 1 reproducibility of the 
18

O values is ±0.09 ‰ VSMOW (Spötl et al., 2005). 175 

The hydrogen isotope composition was measured using a ThermoFinnigan 176 

DELTA
plus

Advantage equipped with a TC/EA high-temperature pyrolysis unit. The 1 177 

reproducibility is ±1 ‰ VSMOW. 178 

 179 

3.3 Evapotranspiration and infiltration 180 

 181 

Instrumental climate data of two nearby meteorological stations (Fig. 1) - Hagen-Fley 182 

(51°25’N, 07°29’E; 100 m asl; 2000-2007; www.dwd.de) and Hemer (51°23’N, 07°45’E; 200 183 

m asl; 2008-2013; www.meteomedia.de) - were used to calculate the evapotranspiration after 184 

Haude (1955) using the following equation: 185 

 186 

Epot [mm/day] = x [mm/day * hPa] * P
13

 [hPa] * (1 – (F
13

 [%] / 100))       (2) 187 

 188 

where Epot is the potential evaporation, x represents the monthly coefficient depending on 189 

vegetation, P
13

 is the saturation pressure at 1 p.m. and F
13

 is the relative humidity at 1 p.m.. 190 

The saturation pressure was calculated using the Magnus-formula: 191 

 192 

P
13

 [hPa] = 6.107 [hPa] *10^((7.5 * T
13

 [°C]) / (237 + T
13

 [°C]))        (3) 193 

 194 

T
13

 is the air temperature at 1 p.m.. Equations 2 and 3 were used to calculate the amount of 195 

water which can potentially infiltrate (Infpot) into the soil and thus, into the cave. Therefore, 196 

the following equation was used: 197 

 198 

Infpot [mm/day] = N [mm/day] – Epot [mm/day]          (4) 199 
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 200 

where N is precipitation. The amount of water infiltrating into the soil above Bunker Cave 201 

was determined using precipitation data from the German Cave Museum Iserlohn.  202 

  203 

3.4 GNIP stations 204 

 205 

Data of four nearby GNIP (Global Network of Isotopes in Precipitation; http://www-206 

naweb.iaea.org/napc/ih/IHS_resources_gnip.html) stations were used for comparison with 207 

monitoring and meteorological data. These include Bad Salzuflen (52°06’N, 08°43’E; 100 m 208 

asl), Emmerich (51°49’N, 06°36’E; 43 m asl), Koblenz (50°21’N, 07°34’E; 97 m asl) and 209 

Wasserkuppe Rhön (50°30’N, 09° 57’E; 921 m asl). 210 

 211 

4. Results 212 

 213 

  Seasonally resolved monitoring data of rain-, soil- and dripwater of Bunker Cave were 214 

partly published by Immenhauser et al. (2010), Kluge et al. (2010, 2013), Riechelmann et al. 215 

(2011, 2012a, b, 2013, 2014), Fohlmeister et al. (2012), Münsterer et al. (2012), and 216 

Wackerbarth et al. (2012). In this study, we present monthly data as well as annual mean 217 

values of the relevant parameters, which were calculated using the monthly or bimonthly 218 

values of the respective year to (i) examine long-term variability and (ii) compare these data 219 

with precipitation/infiltration and temperature data to determine the hydraulic response time 220 

and water transfer time. Annual means were obtained from monthly data (January to 221 

December). 222 

 223 

4.1 Precipitation, infiltration, temperature and rainwater 18
O and D 224 
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 225 

For this study, the time period from 2000 to 2013 is considered. Annual mean values 226 

are shown for all years except 2013, since monitoring stopped in August of this year. Hence, 227 

all mean values for 2013 are related to this time interval. Furthermore, annual mean values for 228 

2006 were not calculated, due to insufficient data. The lowest annual precipitation sum (720 229 

mm) was recorded in 2003, without considering 2013 with the lowest precipitation sum of 230 

447 mm. The highest annual rainfall (1202 mm) and the highest mean annual infiltration (546 231 

mm) occurred in 2007 (Fig. 3A). The lowest annual mean infiltration was observed in 2003 (-232 

171 mm). Infiltration at Bunker Cave is lower during summer months than during winter 233 

(Riechelmann et al., 2011). Monthly temperature data show low values in winter and high 234 

ones during summer. The lowest mean annual air temperature (7.1°C) was observed in 2010, 235 

while the highest (11.3°C) was observed twice, in 2000 and 2007 (Fig. 3A). 236 

Oxygen and hydrogen isotope values of monthly rainwater samples display a seasonal 237 

variability with higher values during summer and lower ones during winter months (Fig. 3B). 238 

In the years 2010 and 2013, the lowest mean annual 
18

O and D values of rainwater were 239 

observed (
18

O: -9.20 and -9.01‰; D: -66.2 and -62.5‰), while the highest mean annual 240 

values were observed in 2011 (
18

O: -5.92‰; D: -45.8‰; Fig. 3B). Monthly
18

O and D 241 

values of rainwater are highly correlated (r = 0.98, p < 0.001; n = 65; see also Fig. 4C).  242 

Since monthly rainwater samples collected during the monitoring do not cover the 243 

same time period as the monthly samples from the GNIP stations, mean annual values are 244 

used here for comparison. Mean annual oxygen and hydrogen isotope values of rainwater 245 

collected at the German Cave Museum correlate well with those of nearby GNIP stations 246 

(Figs. 4A, B). The Local Meteoric Water Line (LMWL) of the rainwater (Fig. 4C) is close to 247 

that of the GNIP station Bad Salzuflen (D = 7.72 * 
18

O + 5.7; r = 0.98; Stumpp et al., 248 

2014). Thus, rainwater collected during the monitoring period reflects the climate conditions 249 
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of western Germany. The slope of 7.72 is close to that of the Global Meteoric Water Line (8), 250 

indicating insignificant evaporation of the collected samples (Gat et al., 2000). Since all 251 

dripwater data plot on the LMWL (Fig. 4C) evaporation in the soil, epikarst and cave 252 

generates no significant imprint on their corresponding isotope values. Furthermore, both 253 

isotope systems depend on the regional surface air temperature and the isotopic composition 254 

of Bunker Cave dripwater reflects the infiltration weighted mean annual 
18

O and D values 255 

of rainwater (Riechelmann et al., 2011).  256 

 257 

4.2 Drip rate 258 

 259 

Due to different drip characteristics of the different drip sites (ranging from seepage 260 

flow to seasonal drip; Riechelmann et al., 2011; Appendix S1 and Fig. 8), annual mean drip 261 

rates were calculated and their long-term variability compared. Both manually and 262 

automatically obtained mean annual drip rates show the same trends (Fig. 5). Sites TS 1, TS 2 263 

and TS 5 show a decreasing trend in mean drip rates over the monitoring period, which is also 264 

reflected in cross-correlations of mean annual drip rates at these sites (TS 1 vs. TS 2: r = 0.82; 265 

TS 1 vs. TS 5: r = 0.85; TS 2 vs. TS 5: r = 0.88; pall  ≤ 0.02, nall = 7). The annual mean drip 266 

rate at site TS 3 correlates only with the annual mean drip rate at site TS 2 within the 95% 267 

confidence level (r = 0.81) and with TS 1 (r = 0.79) and TS 5 (r = 0.72) just below the 95% 268 

confidence level (nall = 6). However, it can be assumed that the annual mean drip rate at site 269 

TS 3 follows the same trend as sites TS 1, 2 and 5. At drip site TS 8 a similar annual mean 270 

drip rate was observed in 2008 and 2009 before drip rates increased until 2011, followed by a 271 

decreasing trend. Drip rate of drip site TS 8 does not show any significant correlation with 272 

any other drip rate.  273 

 274 
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4.3 18
O and D of soil- and dripwater 275 

 276 

Seasonal trends are difficult to identify for soilwater, because of lack of data (no 277 

water), especially summer months. An exception is soilwater at site BW 1 which yielded a 278 

complete time series from 2007 to 2008. There, higher 
18

O and D values occur during 279 

summer/autumn months, while lower values are observed in winter/spring months (Fig. 6). 280 

The lowest mean annual 
18

O and D values occurred in 2010 and 2011 for both soilwaters, 281 

while the highest values are shown in 2007 and 2008 (Fig. 6). Monthly 
18

OBW1 values are 282 

significantly correlated with 
18

OBW2 values (Table 1). The same can be observed for D 283 

(Table 2).  284 

Seasonal trends in 
18

O and D of dripwaters are minor, but most pronounced for 285 

water at site TS 1. In general, lower isotope values occur in summer, while higher values are 286 

observed in winter (Fig. 6). Correlations between 
18

O and D values of monthly samples of 287 

the same site are significant for all dripwaters and both soilwater samples (r ≥ 0.44; p < 0.001; 288 

n ≥ 21). All dripwaters share similarities in their oxygen and hydrogen isotopic composition 289 

as shown by positive cross-correlations (Tables 1 and 2). Mean annual values display the 290 

overall trend for 
18

O and D, which is similar for all drip sites considering the errors (Fig. 6). 291 

Oxygen and hydrogen isotope values increased until 2009, reached a plateau and decreased 292 

around 2012. This trend is less distinct for dripwater at site TS 8 (Fig. 6). 293 

  294 

5. Interpretation and Discussion 295 

 296 

5.1 Constraints on the hydraulic response time 297 

 298 
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The positive correlations of mean annual drip rates of all sites except TS 8 (Fig. 5) 299 

suggests that: (i) these sites are characterized by similar hydrological properties (Baker et al., 300 

1997), and (ii) the drip rates of these sites most likely respond to the same environmental 301 

(climate) forcing. According to Riechelmann et al. (2011), no drip site showed a direct 302 

response to rainfall events, but rather a lagged response of up to several months due to slowly 303 

increasing hydrological pressure in the karst reservoir above the cave. Correlations between 304 

drip rates and precipitation and infiltration during the preceding years based on monitoring 305 

and meteorological data of the stations Hagen-Fley and Hemer were used to determine the 306 

response time of mean annual drip rates to mean annual precipitation and infiltration. The 307 

correlation coefficients (r) between drip rate and infiltration show that the mean annual drip 308 

rates at TS 1 and TS 3 are controlled by mean annual infiltration of the same year, as observed 309 

for other cave systems (Fig. 7A; Genty and Deflandre, 1998; Baker et al., 2000; Miorandi et 310 

al., 2010; Tremaine and Froelich, 2013). Correlation coefficients at drip sites TS 2 and 5 are 311 

close to the 95% confidence level. Since the infiltration amount is controlled by precipitation 312 

amount and temperature (water loss due to evapotranspiration), correlations between mean 313 

annual drip rate and annual precipitation amount were calculated (Fig. 7B). Positive 314 

correlations at the 95% confidence level were found for TS 2 and TS 3 for the same year 315 

interval, while correlation coefficients of TS 1 and 5 are just below the 95% confidence level. 316 

Several sources of error must be considered, however, which lead to a lack of correlation at 317 

the 95% confidence level. Lack of data (< 12 for annual means) may be the problem in case of 318 

drip site TS 5, since neither infiltration nor precipitation correlate at the 95% confidence level 319 

with drip rate. This might also be the case for sites TS 1 and 2. The calculated mean annual 320 

drip rate of the former might be biased, since it shows pronounced seasonal drip rate 321 

variability, with most changes not being covered by the monitoring (Figs. 5 and S1 in 322 

supplementary material). Finally, the calculated mean annual infiltration in the soil reflects 323 
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the potential rather than effective infiltration. Furthermore, it must be kept in mind that 324 

effective infiltration is biased towards winter (Wackerbarth et al., 2010; Riechelmann et al., 325 

2011), which might affect the correlation.  326 

A decrease of the drip rate was already observed for two other drip sites and TS 2 in 327 

Bunker Cave for the first three years as reported in Riechelmann et al. (2011). As shown here, 328 

this trend continued (Fig. 5), i.e. the reservoir was drained further during the seven years. This 329 

might be due to relatively dry years with low infiltration at the beginning of the century. The 330 

following years (2007 to 2010) with higher infiltration most likely did not fill the reservoir 331 

sufficiently to stop the draining and afterwards infiltration decreased again (2011 to 2013; 332 

Fig. 3A). 333 

 The mean annual drip rate at site TS 8 shows a significant positive correlation with 334 

mean annual infiltration with a lag of three years, but no significant correlation near the 95% 335 

confidence level with precipitation. Drip site TS 8 is the only site, whose drip rate does not 336 

show the same trends as the other sites and also lacks a correlation with infiltration and 337 

precipitation for the interval recorded by the other drip sites. This absence of any correlation 338 

might be due to a change in drip behaviour during the monitoring period. 339 

The drip characteristics of all drip sites, plotted according to Smart and Friederich 340 

(1987) and Baker et al. (1997; see Figs. 8 and S1 in supplementary material to this paper) 341 

highlight minor variability, with more or less the same drip characteristics over time. Drip 342 

behaviour changed drastically at TS 8 during the monitoring period (Fig. 8): while seasonal 343 

drip characteristics prevailed in 2008 and 2009, this drip shows seepage flow behaviour 344 

between 2010 and 2012. Possible reasons for this change in drip characteristics include: (i) the 345 

flow paths and the reservoir behaviour in the epikarst underwent changes as a result of 346 

strongly variable rainfall events (Tooth and Fairchild, 2003), (ii) the flow paths of percolating 347 

water changed or became blocked due to prior calcite precipitation (PCP; Fairchild et al., 348 
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2006) occluding the flow paths of water; (iii) the overhanging stalactite was broken off 349 

(earthquake, human interference etc.) resulting in drip parameter changes (Baldini et al., 350 

2006). Amongst these scenarios, it is conceivable that rainfall filled the reservoir feeding TS 8 351 

to a threshold resulting in a more continuous water flow into the cave. PCP is a more likely 352 

explanation for the change in drip behaviour as documented for this site (Riechelmann et al., 353 

2011). The stalactite was removed in June 2008, but the change in drip rate lagged by one 354 

year, suggesting that the drip pattern was not controlled by the stalactite and thus the third 355 

option mentioned above is considered unlikely. Concluding, the drip rate at site TS 8 is 356 

controlled by infiltration and hence rainfall, but the dripwater signal reflecting both of these 357 

parameters is strongly affected by prior calcite precipitation in the aquifer. Although the 358 

catchment of the cave is partly sealed, infiltration and thus the precipitation signal can still be 359 

recognized in the drip rate.  360 

 361 

5.2 Constraints on the water transfer time 362 

 363 

Water transfer times from the surface to the cave are highly variable and range from 364 

days to several years not only for different caves but also for different drip sites in a given 365 

cave (e.g., Kaufmann et al., 2003; Mattey et al., 2008b, Lambert and Aharon, 2010; Treble et 366 

al., 2013; Genty et al., 2014, Breitenbach et al., 2015). Here, the dependency of rainwater 367 


18

O and D on temperature (
18

O versus T: r = 0.73; D versus T: r = 0.68; nboth = 67; pboth < 368 

0.001; Riechelmann et al., 2011) is used to quantify the water transfer time. Correlation 369 

coefficients (r) between 
18

O and D of soil- and dripwater with surface air temperature were 370 

calculated using data of the meteorological stations Hagen-Fley and Hemer. To this end, 371 

monitoring data were correlated with temperature data of preceding years. Since rainwater 372 
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
18

O and D values correlate positively with temperature, only positive correlations are 373 

relevant to determine the water transfer time. 374 

Monthly 
18

O and D values of soilwater site BW 1 at 70 cm correlate significantly 375 

with the atmospheric temperature with a lag of four months (Fig. 9). In case of soilwater site 376 

BW 2 a significant correlation was found using a three months lag (40 cm; Fig. 9). However, 377 

gaps in the monthly soilwater data during dry summer months limit the significance of these 378 

calculations and they should therefore be treated with caution. Thus, this is also resulting in 379 

other highly significant correlations at 63 months lag time in case of BW 2. Since 
18

O and 380 

D values of soilwater correlate significantly with atmospheric temperature at both sites, and 381 

monthly
18

O and D values also correlate for both soilwater sites, we conclude that water 382 

isotopes are not or only slightly altered by processes in the soil zone such as evaporation and 383 

uptake of biogenic CO2 into the water (e.g., Lachniet, 2009). Thus, the temperature 384 

dependency of rainwater is preserved in the 
18

O and D values of soilwater above Bunker 385 

Cave. 386 

Because dripwater at site TS 1 was collected as an instantaneous sample, the 
18

O and 387 

D values are not representative for the whole month as is the case for the other dripwaters. 388 

Therefore, calculations with monthly data were only performed for all other drip sites 389 

resulting in a lag of 29 to 31 months (Fig. 10). Difficulties occurred for TS 2, TS 3, and TS 8 390 

in case of correlations using 
18

O. There, the highest correlations are found between 41 and 391 

66 months and only slightly lower ones are observed for a lag of 29 to 31 months. 392 

Calculations using D of all drip sites except TS 2 and 
18

O for TS 5 do not show these 393 

features, which are most likely due to different mixing of the younger and older water in the 394 

reservoir as a consequence of different transfer times. Variability in the transfer times 395 

between different drip sites may arise due to: (i) variable thickness of the soil layer above 396 
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Bunker Cave, and (ii) differential thickness of the host rock overlying the cave, as well as (iii) 397 

differential lengths and types of individual flow paths (e.g., Tooth and Fairchild, 2003). The 398 

water retention capacity of soil is another factor that may or may not lead to an admixture 399 

waters with different residence time in the soil and epikarst zone (Hölting and Coldewey, 400 

2013). Following dry periods, the portion of older water in the soil increases (Kottek et al., 401 

2006) and the opposite is found during more humid periods. Although, rainfall is equally 402 

distributed throughout the year, infiltration is not, as it is lower during summer than during 403 

winter months (Wackerbarth et al., 2010; Riechelmann et al., 2011). Thus, water retention 404 

capacity might have a small effect on water transfer times at Bunker Cave sulphate and nitrate 405 

data show that dripwaters at sites TS 1 and TS 5 have shorter residence times compared to 406 

sites TS 2, 3, and 8 (Riechelmann et al., 2011). This might explain why both 
18

O and D 407 

correlations with temperature performed well for TS 5. Drip water at TS 2 appears to be the 408 

site with the longest and strongest buffering in the epikarst zone. In contrast to most others 409 

this site displays seepage flow characteristics (see Appendix S1) and the oldest age based on 410 

tritium data (Riechelmann et al., 2012a). This pattern might explain why the correlations at 411 

this site are weakest. However, the shift in correlations using D compared to the other drip 412 

sites (Fig. 10) remains insufficiently explained. Since 
18

O and D values of dripwater at site 413 

TS 1 correlate with those of all other drip sites it can be assumed that the TS 1 water has a 414 

similar transfer time of 29 to 31 months.  415 

The results shown here suggest that the dripwater transfer time at all monitored drip 416 

sites in Bunker Cave ranges between 29 to 31 months (ca. 2.5 years). This is in good 417 

agreement with tritium data, suggesting a transfer time of 2-4 years (±1 year; Kluge et al., 418 

2010). The tritium-based estimates, however, represent mixing ages of younger infiltrating 419 

water and older water of the epikarst reservoir (Kluge et al., 2010; Riechelmann et al., 2012a). 420 
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Based on the fact that all dripwaters plot on the LMWL, alteration of 
18

O and D values are 421 

excluded and hence, both retain the temperature signal of rainwater.  422 

Summing up, the multi-annual monitoring programme at Bunker Cave sheds light on 423 

the complex processes affecting water transfer times. Obviously, a short-term monitoring 424 

program would fail to resolve these patterns.  425 

 426 

5.3 Influence of the North Atlantic Oscillation on the climate in western Germany 427 

 428 

 The North Atlantic Oscillation (NAO) regulates Northern Hemisphere climate 429 

variability and particularly so in western Europe and eastern North America (e.g., Marshall et 430 

al., 2001; Visbeck et al., 2001; Baldini et al., 2008; Hurrell and Deser, 2010; Langebroek et 431 

al., 2011; Pinto and Raible, 2012; Trouet et al., 2012; Wassenburg et al., 2013, 2016; Comas-432 

Bru et al., 2013). The NAO index is defined as the difference of sea-level pressure between 433 

the Icelandic Low and the Azores High (Hurrell, 1995; Wanner et al., 2001). While the sea-434 

level pressure pattern is present throughout the year, it is most pronounced during winter 435 

(Wanner et al., 2001; Pinto and Raible, 2012). Thus, most often the winter (December to 436 

March) NAO index is used when studying climatic variability in the North Atlantic realm 437 

(Proctor et al., 2000; Trouet et al., 2009; Baker et al., 2015). During a negative NAO mode, 438 

the winter in Europe is dominated by cold and dry conditions, while during a positive NAO 439 

mode, mild and humid conditions prevail (Fig. 11A; Hurrell and van Loon, 1997; Marshall et 440 

al., 2001). This NAO-temperature link is reflected in 
18

O of precipitation (Baldini et al., 441 

2008; Mischel et al., 2015; Comas-Bru et al., 2016) and thus can be reconstructed using 442 

suitably sensitive speleothems. 443 

 To quantify the effect of the NAO on regional weather and climate, precipitation and 444 

temperature records of the GNIP stations Bad Salzuflen, Emmerich, Koblenz, Wasserkuppe 445 
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Rhön, and the meteorological stations Hagen-Fley and Hemer were averaged for the months 446 

December to March. December-March average NAO index values (NAODJFM) were 447 

calculated using data provided by the Koninklijk Nederlands Meteorologisch Instituut 448 

(KNMI; http://www.knmi.nl/). Both precipitation amount (r ≥ 0.36, p ≤ 0.05, n ≥ 19, except 449 

Hemer) and temperature (r ≥ 0.58, p ≤ 0.03, n ≥ 5; except Wasserkuppe/Rhön) correlate 450 

significantly with the NAODJFM for most stations (Fig. 11). Thus, precipitation amount and 451 

temperature above Bunker Cave are affected by the NAO during winter months. Since both 452 

parameters are imprinted on drip rate and the dripwater isotope composition, it is possible to 453 

reconstruct NAO variability using proxy time-series from speleothems of Bunker Cave. As 454 

the precipitation in this region is equally distributed throughout the year, substantial summer 455 

precipitation between April to November – despite evapotranspiration – may weaken the 456 

imprint of the winter NAO signal on speleothems (Mischel et al., 2015). However, studies by 457 

Baldini et al. (2008) and Comas-Bru et al. (2016) show that many Central European regions 458 

are sensitive to reconstruct NAO variability. A moderate connection between 
18

O and NAO 459 

variability has also been detected for Herbstlabyrinth-Adventshöhle in Central Germany 460 

(Mischel et al., 2015), supporting the notion that speleothems from these caves record NAO 461 

variability.  462 

With short residence times of <3 years and limited signal smoothing in the overlying 463 

epikarst, Bunker Cave proves to be a sensitive site for high-resolution proxy reconstructions 464 

of past climate dynamics under the influence of North Atlantic atmospheric circulation. The 465 

links between Bunker Cave hydrology and the NAO found in this study are consistent with 466 

the interpretation brought forward by previous workers (Fohlmeister et al., 2012; Wassenburg 467 

et al., 2016). 468 

 469 

5.4 Wider implications of the present data set for speleothem research in general 470 
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 471 

In case of Bunker Cave, Mg/Ca ratios as well as 
13

C values depend on drip rate and 472 

thus, on precipitation and infiltration amount (Riechelmann et al., 2011, 2013; Fohlmeister et 473 

al., 2012). Therefore, both proxies are well-suited for reconstructions of precipitation and 474 

NAO variability. 475 

Disentangling air temperature based on speleothem 
18

O is a more complex task. 476 

There is a clear temperature signal in dripwater 
18

O of all drip sites. This temperature signal 477 

of speleothem 
18

O, however, is altered by (drip rate-related) fractionation processes during 478 

calcite precipitation in the cave (Riechelmann et al., 2013). In the case of speleothem
18

O in 479 

Bunker Cave, variations in both parameters (precipitation and temperature) are recorded 480 

(Fohlmeister et al., 2012). A proxy not recorded in speleothem calcite but in dripwater is D 481 

showing a well-defined temperature signal. Fluid inclusions extracted from speleothems could 482 

be used to quantify D and 
18

O of the original dripwater and to constrain past temperature 483 

changes (McGarry et al., 2004; van Breukelen et al., 2008; Affolter et al., 2015). Given that 484 

the temperature pattern is unaltered in dripwater 
18

O, fluid inclusions 
18

O and D analyses 485 

should allow for the reconstruction of past temperature variability from speleothems in 486 

Bunker Cave and thus, variations of NAO strength.  487 

The most striking observation of the present study is the difference between hydraulic 488 

response time, i.e. immediate drip rate response (<1 year; Fig. 7), and the transfer time of 489 

water from the soil to the cave (ca. 2.5 years; Fig. 10). While drip rate response to annual 490 

precipitation occurs without significant lag on (sub-)annual basis, the temperature signal is 491 

delayed by up to 2.5 years. Thus, the precipitation and temperature signals recorded by 492 

different proxies in speleothems are not fully synchronous. In case of Bunker Cave this delay 493 

is negligible, because here speleothems record proxies on decadal rather than annual or 494 
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seasonal scales (Riechelmann et al., 2011; Fohlmeister et al., 2012). Such proxy biases to 495 

either water transfer or hydraulic response time must be considered in (sub-)annual 496 

reconstructions, and where the signal transfer times for both parameters differ. 497 

 498 

6. Conclusions 499 

 500 

 The seven year-long monitoring of hydrological parameters in and above Bunker 501 

Cave, NW Germany, provides unprecedented insights into processes influencing 
18

O and D 502 

in dripwater and speleothems that cannot be resolved with shorter-term monitoring 503 

programmes. The results of this study aim at quantifying the most relevant processes that may 504 

alter isotope proxies in Bunker Cave speleothems over time scales of several years: 505 

1. Inter-annual drip rate dynamics are controlled by annual infiltration and thus, annual 506 

precipitation. No lag of the hydraulic response time is observed at annual resolution. 507 

2. Water transfer time is 3 months for a 40 cm-thick soil layer and 4 months for a 70 cm-thick 508 

soil. It takes approximately 2.5 years for meteoric water to reach the cave chambers. 509 

3. Neither oxygen nor hydrogen isotopes of dripwaters are altered and hence, record the 510 

temperature signal of meteoric precipitation. As a consequence, 
18

O and D from fluid 511 

inclusions in speleothems are genuine temperature proxies at this site. 512 

4. Temperature and precipitation during winter months (December-March) are significantly 513 

influenced by the NAO. Hence, long-term NAO variations are recorded in speleothems 514 

from northwestern Germany. 515 

5. Monitoring data reveal a difference between the hydraulic response time and the water 516 

transfer time. This, however, does not affect the proxy interpretation of speleothems from 517 

this cave, because of their slow growth rate. But, with regard to other caves, especially 518 
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with seasonally to annually resolved speleothems, this time offset may lead to difficulties 519 

regarding the interpretation of various proxy data. 520 

6. This study provides insights into multi-annual processes operating in cave depositional 521 

environments that are of relevance in speleothem research and can serve as a template for 522 

other cave monitoring programmes. 523 
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 783 

Figure Captions 784 

 785 

Fig. 1 Geological map of the northern Rhenish Slate Mountains in northwestern Germany. 786 

Locations of Bunker Cave, German Cave Museum Iserlohn and the meteorological stations 787 

(MS) Hagen-Fley and Hemer are shown (modified after Riechelmann et al., 2011). 788 

 789 
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Fig. 2 Plan view of Bunker Cave with the locations of drip sites TS 1 and TS 5 in chamber 1 790 

and TS 2, TS 3 and TS 8 in chamber 2 (modified after Scheudoschi and Hasenkamp in 791 

Scheudoschi, 2007). 792 

 793 

Fig. 3 Monthly values of temperature as well as rainwater oxygen and hydrogen isotope data 794 

and mean annual values of precipitation, infiltration, temperature as well as rainwater oxygen 795 

and hydrogen isotope data. A) Precipitation data from 2000 to 2006 of the meteorological 796 

station (MS) Hagen-Fley and data from 2007 to 2013 measured during this study at the 797 

German Cave Museum Iserlohn. Temperature data from 2000 to 2007 were provided by the 798 

MS Hagen-Fley and 2008 to 2013 by the MS Hemer. Infiltration data are calculated using 799 

data of both meteorological stations. B) Rainwater oxygen and hydrogen isotope data 800 

measured from the rain sampled at the German Cave Museum Iserlohn. 801 

 802 

Fig. 4 A) Comparison of mean annual oxygen isotope data of four GNIP stations with 803 

rainwater data collected during this study. B) Comparison of mean annual hydrogen isotope 804 

data of four GNIP stations with rainwater data collected in this study. C) Local meteoric water 805 

line (LMWL) of the rainwater and position of the dripwaters on the LMWL (small box). 806 

 807 

Fig. 5 Mean annual drip rates in Bunker Cave. Both manual and automatic drip rate data are 808 

shown. 809 

 810 

Fig. 6 Monthly and mean annual oxygen and hydrogen isotope data of soil- and dripwaters. 811 

 812 
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Fig. 7 A) Correlation coefficients between mean annual drip rate and annual infiltration. B) 813 

Correlation coefficients of mean annual drip rate with annual precipitation. Note the offset to 814 

obtain the hydraulic response time of the reservoir to precipitation and infiltration. 815 

 816 

Fig. 8 Drip characteristics of drip site TS 8 according to Smart and Friederich (1987) and 817 

Baker et al. (1997). Data from 2013 are not displayed as they do not cover the whole year. 818 

 819 

Fig. 9 Correlation coefficients of monthly 
18

O and D values with atmospheric temperature 820 

for both soilwater sites BW 1 and BW 2. 821 

 822 

Fig. 10 Correlation coefficients between the monthly 
18

O and D values of all dripwaters and 823 

atmospheric temperature.  824 

 825 

Fig. 11 A) NAO index for December to March calculated for the period 1975-2013 826 

(http://www.knmi.nl/). B) Precipitation data of the GNIP and meteorological stations for 827 

December to March for the period 1975-2013. C) Temperature data of the GNIP and 828 

meteorological stations for December to March for the period 1978-2013.  829 
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Table 1. Correlations between monthly 
18

O values of the different drip- and soilwaters. 

Significant correlation coefficients (r; p ≤ 0.05) are printed bold. Data points used for 

statistics vary between 14 and 65.  
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TS 3 0.36 0.43

TS 5 0.41 0.55 0.63

TS 8 0.50 0.47 0.58 0.37

BW 1 -0.11 -0.53 -0.07 -0.17 -0.31

BW 2 -0.27 -0.05 0.57 0.66 -0.07 0.72
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Table 2. Correlations between monthly D values of the different drip- and soilwaters. 

Significant correlation coefficients (r; p ≤ 0.05) are printed bold. Data points used for 

statistics vary between 15 and 65. 
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